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ABSTRACT

We address the issue of large scale network security. It is
known that traditional game theory becomes intractable when
considering a large number of players, which is a realistic sit-
uation in today’s networks where a centralized administration
is not available. We propose a new model, based on mean
field theory, that allows us to obtain optimal decentralised
defence policy for any node in the network and optimal at-
tack policy for an attacker. In this way we settle a promising
framework for the development of a mean field game theory
of large scale network security. We also present a case study
with experimental results.

Index Terms— Dynamic programming, game theory,
mean field, network, optimal control, security

1. INTRODUCTION

Network security has been a prominent research field in the
last years, as networks continue to gain importance in today’s
society. Useful frameworks such as game theory have been
applied successfully to this issue [1, 2, 3], by considering a
game with just two players: a single attacker and a single
defender. Nevertheless, such model becomes limited for large
networks. A more realistic model is to consider every node
in the network as a player. However, the problem becomes
intractable as the network scales in size.

We propose a mean field approach where every node is a
player, but they do not have to take into account the state of
every other individual node, just some aggregate state called
mass function. This is similar to the situation where a predator
wants to catch a shoal of fish. In such case, each fish may not
take into account every other fish in the shoal to choose it’s ac-
tion, but just the aggregate of the whole shoal. This considera-
tion can be used to simplify a game formed by a large number
of players and transform it into a game of two agents, the fish
and the shoal [4, 5]. In our case the whole network behaves in
a way as a shoal of fish, where the hacker is the predator. The
mean field approach has been successfully applied to fields
such as energy or interference management [6, 7], but to our
knowledge very little research has been done linking dynamic
mean field theory to network security. Also, most of the cur-
rent theoretical research is based on continuous frameworks,
despite the potential of discrete mean field games for multiple
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applications. Reference [8] proposes a model based on mean
field games for mobile ad-hoc networks. We provide a differ-
ent approach to the security problem in large scale networks,
where the incentives are based on network topology rather
than information assets and energy. In addition, as we will
see in Section 3, we look for solutions in a stationary state.
This allows us to relax the assumptions regarding network ob-
servability, which is not realistic in large scale networks.

Our main theoretical contributions are as follows: First,
we introduce a new model for large scale network security.
Secondly, we apply a mean field approximation to overcome
the intractability for a high number of nodes. Next, we show
how the network can find the optimal response for a given
attack in the mean field framework, as well as how the at-
tacker can find an optimal response for a given defence pol-
icy. Lastly, we solve the problem numerically for an example
case.

In section 2 we define the system model, i.e., the com-
ponents, incentives and dynamics of both the attacker and
defender. In section 3 we propose a mean field approxima-
tion of the system. In section 4 we calculate the best response
functions in the stationary regime with dynamic programming
methods. In section 5, an example case is studied and solved.

2. SYSTEM MODEL

We consider a large network represented with a graph G =
(V, &), where € is the set of edges and V is the set of nodes
with large |V| = N. Each node i € V has a degree k, which
is the number of neighbour nodes to which it is connected.
The network has a degree distribution G(k), which is the pro-
portion of nodes with degree k in the network.

We define the importance of each node to the network as
an increasing function of its connectivity degree I(k), since
hacking nodes with more connections generally do more harm
to the network. Each node has a discrete security state level
' € X = {0, ..., N,} that evolves stochastically but can be
controlled with maintenance.

We represent the attacker with superscript 0 and the de-
fender with superscript ¢, where ¢ = 1, ..., V.

2.1. Attacker

At every time step t the attacker chooses the action pair
(K9, aY) € K x AY, where X is the set of degrees of the net-
work, and A° = {4, ..., Ap} is the set of available attacks to
the attacker (such as hack ftp server, brute force attack, etc).
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When the attacker has chosen degree kY and action a,

some node ¢ is drawn randomly from the nodes of the network
with that degree. The failure of the attack at time ¢ is mod-
elled by a Bernoulli random variable f; ~ Ber(p(-|a?, z%)),
where z¢ is the security level of the attacked node at time ¢
and where p is the probability that f; = 1. Note that the dis-
tribution of f; depends on both the action of the attacker and
the security level of the defender, modelling the compromise
between attack strength and defence level. The success of the
attack at time ¢ is denoted by s; = 1 — f;. Since the node is
chosen randomly by the attacker, the security level is also a
random variable X. We define m;(x, k) as the mass function
on time ¢, representing the proportion of nodes of degree k
and security level  in the network. By defining also my(z|k)
as the proportion of nodes in the level = of those with degree
k, we easily obtain my(z, k) = m(z|k)G(k). Now we in-
troduce the probability of f; taking a specific value given the
actions of the attacker and the network configuration:

p(felag, ksme) = Zp(ft\a?,x)p(X = zlk}) =
reX

= Zp(ft\a?,x)mt(ﬂk?) (D

rzeX

The attacker should be discouraged to make strong attacks on
important nodes repeatedly, since if it fails then the attacker
gains notoriety so that it is more likely to be caught. There-
fore, we induce caution in the attacker. Define the state of the
attacker as the notoriety level denoted by g. When an attack
fails, the attacker gains n(a?, kY) units of notoriety. Here,
n(a?, kY) is an increasing function of kY, since failing an at-
tack in important nodes results in more notoriety. The dynam-
ics for q; are

g1 = (1 — Q)ge + n(a?, k) f; 2)

The (1 — «)g; term is a forgetting factor, which makes the dy-
namics stable and determine the time of recovery if the attack
fails.

The attacker aims to minimize its notoriety and the cost
c(ay) associated to its actions. It also aims to maximize the
number of successful attacks, which are weighted by the im-
portance of the hacked objective I(k). Finally, we include
an entropy penalization term e, meaning that it is willing to
sacrifice some of its reward in order to become more unpre-
dictable. To do this, the attacker plays on each state ¢, a mixed
strategy, i.e., probability distribution over the space of actions
7°(a?, k?|q:), which we refer as the attack policy. Note that
a? and k} are now random variables distributed according to
7V, Thus, we propose the following cost function:

‘]O(qaﬂ—ovmt) = E {ZﬂtLo(qtvagv k?,ﬂ07 5t)|q0 = Q}
t=0
(3)
where
Lo(qt,a?, kto,ﬂ'o, st) = wqu — wﬂ(k?)st + wgc(a?) 4)
+ elog(ﬂo(ag,kﬂqt)) 5)

is the running cost and the expectation is taken over s; ~
Ber(1 — p(-|ag, k}';my)) and over (af, k7)) ~ 7°(a?, k?q:).
Here, wy, we, and w3 are weighting parameters.
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2.2. Defender

Each node in the network has the ability to maintain its secu-
rity level at discrete steps. This level is subject to stochastic
deterioration (e.g. new vulnerabilities are found). Every node
i can choose an action a’ from A = {0, 1}, where 1 means
“update” and 0 “not update”. He can also randomize its ac-
tions according to some set of probabilities', extending the
space of actions to A" = {p1,...,pp}, where each action
means that it can randomly update the system with proba-
bility p; or do nothing with probability 1 — pg. The nodes’
objective is to find a defence policy pi* : X x K — A" that
maps current state to optimal action. We assume all nodes
have identical incentives and dynamics. Thus, they solve the
same problem and the optimal policy will be the same for all
of them, i.e., pi(x, k) = u(z, k) Vi€ V.

The dynamics for the network nodes are modelled with a
transition probability matrix P} for each degree k, with en-
tries 75 given by:

Pl = P(Xt1 = j|Xe =43 (i, k), k) (6)
Note that the transition probabilities depend on the policy .
Each row of the matrix corresponds to the transition probabil-
ities from the state ¢ while choosing the action p(%, k), so that
P} is a row stochastic matrix. The transition probabilities
are known for the case of “update”, denoted by u(i, k) = 1,
and “not update”, denoted by p(i,k) = 0. If a defender of
degree k£ chooses some probability of updating the system
w(i, k) = pqg € A", the transition probabilities can be ob-
tained with the law of total probability:

P =paP(Xe1 = §|1Xe = 454, k) = 1,k)

+ (1 = pa) P(Xi1 = jIXe = i5u(i, k) = 0, k)
(7

The defender aims to minimize a cost term associated to the
updating of the system, denoted by ca’ where c is some cost
parameter. It will also aim to minimize the number successful
attacks to the network, weighted by the importance of each at-
tacked node. This last term couples the optimization process
for all nodes in the network, settling a collaborative frame-
work.

We define the random variable si to model the event that
the attacker draws node 7 as its objective and the attack is
successful. We propose the following cost function for the
defender

J(a' a7 %) =E {Z B'L(a}, s}, s; ") |ah = a:i,w}

t=1
(8)
where
N

L(aj, s, s,") = caj + 1> I(k')s, ©)

i=1
and the expectation is taken over st ~ Ber(1 — p(-la?, z1)),
(af, k") ~ 7%(a® k'|q), and a} ~ Ber(-|u(z,k)). Here

IThe discretization of the probabilities is made for computational
tractability, and the continuous version will be addressed in future work
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is a weighting parameter, x_i represents the state of all the
players other than 7 and s; models the event that the hacker
attacks node 7 successfully.

3. MEAN FIELD APPROXIMATION

In this section we derive the mean field approximation of the
cost in equation (8) to the form J(y, m, 7’), where m is the
initial mass function of the network.

We look for solutions defined on stationary states, i.e.,
states where the system does not evolve with time. For a given
policy, those states are reached asymptotically as ¢ — oo in-
dependently of the initial conditions, since the system is er-
godic due to the Markov-like evolution of the mass and the
mean field limit, as discussed in section 3.2. This allows any
player to predict the long-term mass function for a given pol-
icy without the need to measure the actual state of the net-
work.

3.1. Defender approximation

To introduce a mean field approximation for the nodes in the
network (i.e., defenders), we take the expected value of the
aggregative term in (9). We also define the random variable
I? as the node of degree kY drawn by the attacker on time ¢:

N . .
> I9E(s} =

ZW >

a%e A0

(Gla®, zp)p(1) = i|k")7°(a®, k'|q:) (10)

Noting that p(I?|k;) = % a 1,0) , we can simplify equation

(10) into:

> ZIH (Gla® )(“(If)m (11)

aOG.A0 i=1

Now, using the definition of mass function we can write equa-
tion (11) in terms of it as:

ZI (KHE{si} =
> > D Ik

a®c A zeX ke

g(m,7°lq) =

m(x, k) (12)

p(Gla, )T G

0(a®, k|q)

However, the defender does not now exactly in which state
the attacker is to evaluate g(m, 7%|q). Recalling the fact that
we look for stationary solutions, we can obtain a stationary
probability density function f(g) from equation (2). One way
to approximate it is to discretize ¢ in the points g; for i =
1,..., N4, and then obtain an approximation of the transition
probabilities given the policy 7° from the point g; to the point
g;. Finally, we obtain the stationary distribution f(g;) of the
underlying Markov chain and define

Nq
)~ fla)g(m, m°lg:) (13)
=1
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Since the resulting cost function of the defender is the same
for every node, we can drop the superscript and consider the
cost for a generic node.

3.2. Mass evolution

As we have discussed, the evolution of the state of each player
is stochastic, and consequently the evolution of the mass can
not be accurately predicted in a general case. However, as
N — oo it becomes deterministic due to the law of large
numbers, so that the system as a whole is predictable. This is
the so called mean field limit.

Now we approximate the evolution of the mass function,
which depends on the defence policy of the network, using
the transition probabilities:

ZP (X1 = 2| Xy = j, p, K)m(jlk)e (14)
J

m(z|k)ir1 =

which can be expressed more compactly in vector form for
every security level state:

mb o =P m (15)

where mf € RV« is the conditional mass function vector for
the degree k in the time ¢.

Because we look for stationary solutions, the conditional
mass function for each k is the right eigenvector of P,i‘T asso-
ciated to the simple eigenvalue 1. Since P}’ is a row stochas-
tic matrix, by Perron-Frobenious theory the first eigenvector
is unique and can be obtained by iteration of (15) until con-
vergence. Since the stationary mass only depends on the de-
fenders’ policy u, we define the mapping from the space of
policies to the space of mass functions as m,,, so that its £,

: ko_ k
column is [m,]r =m lim my.

o t—o0

3.3. Outline and final cost

With this mean field approximation, the cumulative cost of a
generic defender becomes:

J(x, p, 7 —E{ZBtL(at,mM,woﬂmo :m} (16)
t=1
where
L(a, my, ﬂ'o) = ca + lg(my, ﬂ'o) a7

and the expectation is taken over ai ~ Ber(-|u(z, k)).

We remark that now the cost in (16) not depend on all the
network nodes, but just on the mass function and the defender
policy. Thus, we have transformed the original problem to a
tractable one whose complexity does not increase with the
scale of the network.

4. BEST RESPONSE FUNCTIONS

4.1. Optimal defense

The optimal defense of the network given a known attack pol-
icy 7(a, k°|q) is the solution to the following problem

BR(x,k,7°) = arg r(nirkl){J(:v,u,wO)} (18)
u(e,
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which can obtained by solving the Bellman equation:

V(x, k,m0) = min) {E{L(a,mu,wo) + BV (2, k)}}

w(w,k
(19)
where V' (z, k) is the value function. The expectation is taken
over the next state z/, given that the actual state is . In order
to solve (19), we use a fixed point iteration known as value
iteration [9].

For the sake of clarity, we drop the dependence of k, since
the problem for each k can be solved independently. We
denote the iteration as z and define [u(x), u*] as the vec-
tor (p* (1), ..., w(x), ..., u* (N, )). Taking the expectation in
(19) the fixed point iteration becomes:

VA (z) = min (@) + (M) o), ™)

+8_ PLSIVA()) (20)
J

A detailed convergence analysis of value iteration can be
found on [10]. However, the convergence behaviour includ-
ing terms depending on [(z), +%] is beyond the scope of this
paper.

4.2. Optimal attack

Given a defence policy, and thus a network mass function, the
problem of the attacker is:

BR(g, ) = argmin{.J*(g,x°, m,.)} 1)

This problem can be solved in a similar manner to the de-
fender, solving the Bellman equation for the attacker:

V(g) = min {E{Q(q,a", k*, V') + elog(n’(a", k")) } }
(22)

where the expectation is taken over (a°, k°) ~ 7V, Here, the
@ factor is defined in the following manner:

Q(q,a’, k°, V) =E {w1¢® — waI(k°)s; + wzc(a’)
+V(q)g a® K%} (23)
where the expectation is taken over s and ¢’. Note that () does
not depend on 7°, since the probabilities of ¢’ and s given g,

a” and k° are independent of the attacker’s policy. Now, we
define the fixed point iteration

VAt(g) = min > 70’ k°g) (Q(g,a’, k", V)

™
af k0

+elog(n”(a®, k°|q))) (24)
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It can be shown from the first order optimality conditions that
a unique minimizer of the right side of (24) is

—Q(g,a%,k9,v?)
<

70(a%, k°|q) = (25)

—Q(q.a0.k0. V=)
<

a,k e

where the summation goes over a’ € A" and k° € K. Then
we just have to evaluate @ for all (a’, k%), given V* and ¢, to
perform the iteration.

However, in contrast with the defender, the state ¢ is a
continuous variable. For numerical reasons, this requires
some sort of approximation in the value function to be eval-
uated at each iteration. We address this using a truncated
Chevyshev basis and projecting the value function in that
subspace. This is

Vi(q) ~ Y amtm(q) (26)
m=1

where ¥,,,(q) is the Chevyshev polynomial of order m defined
on the range of the approximation. Then on each iteration we
evaluate the Bellman equation on a set of n points over the
space of states. Finally, we obtain the coefficients of the next
iteration in the MSE sense 2.

5. CASE STUDY

Consider a network with || = 5 and G(k) = CXM_TO'%),

where Z is a normalization constant. Here, N, = 5, A% =
{1,2,...,6} and c¢(a®) = a°.

We define exponentially decaying transition probabilities
for “not update” actions, and similar ones for “update” ac-
tions, with its peak on = + 1, if x was the actual state. This
way we model the decaying of the security level if the system
is not updated, and its increment in the other case. Also, we
set ¢ = 1 for the action of updating the system and a weight
of [ = 3 units to the mass term in the cost function of the de-
fender. We also allow the defender to randomize actions with
probabilities A™ = {0,0.25,0.5,0.75,1}.

We use 8 = 0.6 in both cases and a forgetting factor of
a = (.7 for the attacker. In addition, we use a factor of ¢ = 20
units of penalization for entropy. We define the increment in
notoriety for unsuccessful attacks as n(a, k) = 0.lak. We
also define the probability that the variable f; (defined on sec-
tion 2.1) takes value 1 as

1
1+ exp(a — 22t +1)

p(filaf, =) = 27)

Then, the failure probability of an attack with action a” on a

node of security level x is of sigmoid form, increasing rapidly
with the difference between a° and 2z.

We also define the importance of a node to the network as
the square of the connectivity degree I(k) = k2.

2The detailed procedure will be addressed in a future version
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5.1. Defending the network

We assume that a hacker which attacks all degrees with equal
probability and random attack actions, i.e. 7°(a,k|q) =

ﬁ The resulting defence policy is shown on Figure 1,

and the resulting conditional mass function is shown on Fig-
ure 2.  We observe that the most important nodes defend

Fig. 1. Optimal defence policy

Fig. 2. Conditional mass function

themselves with more intensity in spite of the cost. This
makes the mass more concentrated in higher security levels
for the most important nodes.

5.2. Attacking the network

We assume that the mass function is the resulting one from
Section 5.1, and that it is known to the attacker. We show the
results for ¢ = 2 in Figure 3 as an example. For a given net-

Fig. 3. Optimal attack policy for q=2

work configuration, the attacker prefers to attack with more
intensity the lower degrees while lowering the intensity of its
actions for nodes with higher degree. It also prefers to attack
lower degrees rather than high ones. This is logical in this
scenario, since high degrees are very well defended.
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6. CONCLUSIONS AND FUTURE WORK

We have proposed a new theoretical model for the security
problem in large scale networks using a mean field approx-
imation. We have also shown how to obtain best response
attack and defence policies in tractable and scalable way.

This work also settles the basis for mean field reinforce-
ment learning in large scale networks for security domains.
We think that is a subject of great interest, and will also be
the object of future research.

Future work also includes addressing the computation of
Nash equilibrium points of the game with continuous random-
ized policies, and the formalization of numerical methods for
discrete mean field games.
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