
Parras et al. EURASIP Journal onWireless Communications and
Networking (2017) 2017:69
DOI 10.1186/s13638-017-0857-8

RESEARCH Open Access

Pursuit-evasion games: a tractable
framework for antijamming games in aerial
attacks
Juan Parras1* , Santiago Zazo2, Jorge del Val1, Javier Zazo1 and Sergio Valcarcel Macua1

Abstract

We solve a communication problem between a UAV and a set of receivers, in the presence of a jamming UAV, using
differential game theory tools. We propose a new approach in which this kind of games can be approximated as
pursuit-evasion games. The problem is posed in terms of optimizing capacity, and it is solved in two ways: firstly, a
surrogate function approach is used to approximate it as a pursuit-evasion game; secondly, the game is solved
without that approximation. In both cases, Isaacs equations are used to find the solution. Finally, both approaches are
compared in terms of relative distance and complexity.

Keywords: Pursuit-evasion games, Isaacs equations, Mobile networks, UAVs

1 Introduction
The jamming problem in wireless links has received a
lot of attention in research. The expansion of wireless
communications has been responsible for that. A field of
interest in this area is related to communications between
unmanned aerial vehicles (UAVs), whose communications
must be wireless and hence vulnerable to jamming attacks.
This is an area of research where different attack/defense
strategies have been proposed. A wide variety of tech-
niques are used, such as spectral channel surfing and
spatial positioning of the nodes [27], game theory tools
[12, 13, 25, 26], or the use of a honeypot node [4]. A
general survey of jamming techniques is presented in [20].
In case that the jammer and communicating nodes are

mobile, the attack can be modeled as a zero-sum, non-
cooperative differential game [1]. There are several tools
dedicated to analyze this kind of games, especially for two-
player games [8, 11]. There are specific solutions for some
multi-player games, such as [3, 19, 24]. The main tools
used are the Hamilton-Jacobi-Bellman-Isaacs equations,
which are difficult to solve to obtain an analytical solu-
tion. In some specific games, the game can be solved
using only Isaacs equations [8], which greatly simplify the

*Correspondence: j.parras@upm.es
1Universidad Politécnica de Madrid, C-303, Avda Complutense 30, 28040
Madrid, Spain
Full list of author information is available at the end of the article

analysis. However, Isaacs equations are not very known,
and in this work, we also relate them to Bellman and
Pontryagin methods, showing that Isaacs equations are a
particularization of them for pursuit-evasion games. The
main advantage of Isaacs equations relies on the fact that
they provide a method that uses a set of steps to find the
solution to the game.
Another contribution of this work is posing the problem

of pursuit-evasion in terms of capacity, which none of the
cited works do. This approach allows us to study the prob-
lem from the communications point of view: our target
is to optimize the communications capacity, which to the
best of our knowledge, has not been done yet. We approx-
imate the communications capacity by a linear function,
and it turns out that solving the game using that function
becomes unpractical. We also solve the pursuit-evasion
game—without taking into account the communications
capacity—and we show that both problems have very sim-
ilar solutions. Hence, we show that it is possible, under
certain circumstances, to approximate the hard capac-
ity problem by an easier pursuit-evasion game, which
could be solved either analytically—as we do—or using
numerical methods, as in [9].
This work also expands a previous one [18]. In both

works, we study the case in which there is one UAV trying
to communicate with receiver nodes while another UAV

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-017-0857-8&domain=pdf
http://orcid.org/0000-0002-7028-3179
mailto: j.parras@upm.es
http://creativecommons.org/licenses/by/4.0/

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 2 of 15

trying to jam the communications. The problem is mod-
eled using differential game theory. The receivers can be
static or dynamic, but their exact position is unknown.
On [18], our main contribution was posing the problem in
terms of optimizing capacity, and under some hypotheses,
approximating it as a pursuit-evasion game using Isaacs’
tools, which allowed obtaining a new approach in which
communications-related problems can be solved using
well-known pursuit-evasion game tools. In this work, we
deepen the theoretical bases for our approach and we also
solve the capacity game posed without using the surro-
gate function approach. Both approaches give very similar
solutions but very different computational complexity.
Hence, in this work, our main contribution is to validate
our primal approach, as well as to solve the game with less
hypotheses, that allows comparing of both solutions.
The article is organized as follows: the main results and

discussions are found in Sections 2 to 6. In Section 2, we
give a brief introduction to differential game theory and
present Isaacs equations. Then, in Section 3, we describe
the jamming problem that we pose and obtain the expres-
sion for total system capacity. After, in Section 4, we solve
the game posed in Section 3 approximating it as a pursuit-
evasion game. Next, in Section 5, the capacity game is
solved. Both game results are compared in Section 6.
Finally, the main conclusions are outlined in Section 7.

2 General framework of differential games
2.1 Introduction to game theory
Game theory [1] is a branch of mathematics that deals
with interactions among multiple decision makers called
players. A player tries to optimize her own objective func-
tion, which generally depends on the actions of other
players, which means that a player cannot optimize her
objective function independently of the rest of players.
In this paper, we will center in non-cooperative,

dynamic, zero-sum games. Non-cooperative gamesmodel
the actions of agents trying to maximize their own objec-
tive function. In these games, the solution concept that is
used is a Nash equilibrium, named after the mathemati-
cian John Nash who introduced and proved this concept
[16, 17]: a Nash equilibrium is such that none of the
players can improve her payoff by a unilateral move.
A game is dynamic if a player takes different decisions

over time [5]. In these games, the objective function of the
players depend on a state which changes with time. Also,
each player makes various actions, which are collected by
her strategy, which is a function of time.
In the case of dynamic games, the time interval over

which the game takes place can be finite, that is, t ∈ [0, tf],
or infinite, when t ∈ [0,∞): that causes games to be of
finite or infinite horizon. Also, it is possible that this time
is discrete or continuous; in the second case, the game is
usually called differential game.

Finally, a game is called zero-sum if the sum of the
objective functions of the players can be made zero after
appropriate positive scaling and/or translation that do not
depend on the decision variables of the players (i.e., their
actions or controls) [1].

2.2 Introduction to differential games
A differential N player game, with N players and where
N := {1, ..,N} is the players set, has the following
elements:

• A continuous time interval, t ∈ [0, tf], where tf is the
final time of the game. This interval denotes the
duration of the evolution of the game, which can be
finite in case that tf < ∞ or infinite otherwise. In this
work, we will study finite horizon games.

• A trajectory space, denoted by S , which is an infinite
set whose elements are the permissible state
trajectories, denoted as {x(t), 0 ≤ t ≤ tf }. For each
fixed t ∈ [0, tf], x(t) ∈ S0, where S0 is a subset of a
finite-dimensional vector space. The trajectories x(t)
describe the state of each player in each time instant.

• An action space for each of the N players, denoted by
U i, which is an infinite set defined for each i ∈ N .
The elements of this set are the permissible controls
of player i. There exists a set Si ⊆ R

mi (i ∈ N) so
that for each fixed t ∈ [0, tf], ui(t) ∈ Si. The controls
will be functions of the time, and the game solution
searches for the optimal control function for each
one of the players that drive the game to a Nash
equilibrium situation.

• A differential equation, called the dynamics equation,
which defines how the states vary with time as a
function of the players’ controls, states, and time. Its
solution describes the state trajectory of the game as
a function of controls and initial state (i.e., x0). Its
form will be:

dx(t)
dt

= f (t, x(t),u1(t), . . . ,uN (t)), x(0) = x0 (1)

• A set-valued function ηi(t) which determines the
information that is available to player i at time t.
There are two main information patterns [1]:

1. Open-loop pattern, if ηi(t) = {x0}, t ∈ [0, tf]. The
player can only access the initial state of the game.

2. Closed-loop perfect state (CLPS) information, if
ηi(t) = x(s),∀s ∈ [0, t]. The player has access in
every stage of the game, to the current, past, and
initial states.

• Two functionals for each player,
Gi : S0 → R, Li :[0, tf]×S0 × S1 × ... × SN → R,
defined for each i ∈ N , so that the cost functional of

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 3 of 15

player i, denoted by π i(x(t),u1(t), ...,uN (t)) , is well
defined. Its form is:

π i(x(t),u1(t), ...,uN (t))

=
∫ tf

0
Li(t, x(t),u1(t), ...,uN (t))dt + Gi(x(tf))

(2)

This cost functional is the objective function. Li is
called the running cost, and Gi is the terminal cost,
the former being the cost incurred while the game is
being played and the latter being the cost that adds
up in a particular terminal state.

2.3 Standard methods for solving differential games
In order to solve a differential game, the information
structure ηi(t) plays a key role in the solution procedure
used [28, pp 22–32]. Mainly, two approaches are followed:
the maximum principle of optimal control, developed
by Pontryagin [21], is used to solve open-loop games,
whereas the principle of dynamic programming by Bell-
man [2] is used to solve closed-loop, perfect state infor-
mation games.
If the information structure follows an open-loop pat-

tern, each player can only access the initial state of the
game, and this information allows each player to know
the optimal trajectories of the others. Hence, the controls
become a function of initial state and time. The solution
to this problem uses the maximum principle of Pon-
tryagin and is characterized using the following theorem
[28, pp 24–25]:

Theorem 1 A set of strategies {u∗
i (t), for i ∈ N} pro-

vides an open-loop Nash equilibrium solution to the game
in Section 2.2, being {x∗(t), t ∈ [0, tf] } as the correspond-
ing state trajectory, if there exist m costate functions�i(t) :
[0, tf]→ R

m, for i ∈ N, such that the following relations
are satisfied:

• u∗
i (t) = argmax

ui
{Li(t, x∗(t),u∗

1(t), ...,u∗
N (t))

+ �i(t)f (t, x∗(t),u∗
1(t), ...,u∗

N (t))}
• ẋ∗(t) = f (t, x∗(t),u∗

1(t), ...,u∗
N (t)), x∗(0) = x0

• �̇i(t) = − ∂
∂x∗ {Li(t, x∗(t),u∗

1(t), ...,u∗
N (t)) +

�i(t)f (t, x∗(t),u∗
1(t), ...,u∗

N (t))}
• �i(tf) = ∂

∂x∗ {Gi(x∗(tf))}
for i ∈ N

This theorem could also be used to obtain solutions
under closed-loop information structure; however, the
partial derivative with respect to x in the costate equations
would receive contributions from dependence of the oth-
ers N − 1 players’ strategies on the current value of x,
which complicates the solution. Another problem is that

there are, in general, an uncountable number of solutions,
due to information non-uniqueness.
In order to avoid these problems, closed-loop perfect

state (CLPS) information structure is used. The solution
to this problem uses Bellman’s dynamic programming
principle and is characterized using the following theorem
[28, p 28]:

Theorem 2 A set of strategies {u∗
i (t), for i ∈ N} pro-

vides a feedback Nash equilibrium solution to the game in
Section 2.2, if there exist continuously differentiable func-
tions V i(t, x) :[0, tf]×R

m → R, i ∈ N, satisfying the
following set of partial differential equations:

• −∂Vi(t, x)
∂t

=max
ui

{Li(t, x∗(t),u∗
1(t), ...,u∗

N (t))

+ ∂Vi(t, x)
∂x

f (t, x∗(t),u∗
1(t), ...,u∗

N (t))}
• Vi(tf , x) = Gi(x)

for i ∈ N

Observe that the expression from Theorem 1 can be
obtained from the optimality system in Theorem 2 in the
case where the value function is smooth. If the value func-
tion is not smooth, weak derivatives or derivative in the
distribution sense can be used as well.

2.4 Pursuit-evasion games
Let us particularize the expressions in Section 2.2 for a
two-player, zero-sum, pursuit-evasion game. Being two-
player means that there are N = 2 players, called pursuer
and evader, respectively. The pursuer tries to catch the
evader, whereas the evader seeks to flee from the pur-
suer. Their controls will be called φ(t) and ψ(t), and the
dynamics equation will be provided by the concrete setup
of the game. The state vector will be called x(t). Both play-
ers will have the same cost functional with opposite sign,
and hence, the rewards add up zero, and thus, the game
will be zero-sum. That means that the gains of one player
are the losses of the other. This payoff function is given by
the following functional, which comes from (2):

π (x(t),φ(t),ψ(t)) =
∫ tf

0
L (x(t),φ(t),ψ(t)) dt+G

(
x(tf)

)

(3)

In a pursuit-evasion game, final and running costs are
G = 0 and L = 1 , respectively; thus, the payoff function
will be π = tf , where tf stands for capture or termina-
tion time. Pursuer tries to minimize the capture time and
evader tries to maximize it.
The game outcome obtained if both players implement

their optimal strategy will be called value function V (x) =
π [x(t),φ∗(t),ψ∗(t)], where φ∗ denotes the optimum value

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 4 of 15

of φ and ψ∗ is the optimum value of ψ , for any state
x(t) in the state space. The gradient of the value function
will be denoted as ∇V . Lastly, the concrete setup of the
system will provide the dynamic equation, which will be
expressed in the following form: ẋ = f (x(t),φ(t),ψ(t)).
Finally, a key element of the solution procedure is the

Hamiltonian, which is built using the dynamics equation,
the gradient of the value function, and the running cost of
the game as follows:

H(x,∇V ,φ,ψ) =∇VTf (x,φ,ψ) + L(x,φ,ψ)

=∇VTf (x,φ,ψ) + 1
(4)

where ∇VT is the transposed of the vector ∇V .

2.5 Isaacs’ approach
Apart from the methods described in Section 2.3, another
approach can be used to solve certain kind of games:
Isaacs’ equation [8]. This method can be used to solve
open-loop games, which satisfy the following conditions:

• The game is two players, zero-sum, and
pursuit-evasion type. Being a pursuit-evasion game
implies that final time is free (i.e., to be optimized),
but this condition can be relaxed [8, p. 34].

• The Hamiltonian is separable on its controls [8, p. 35].

If these hypotheses are satisfied, the Hamiltonian
satisfies the following conditions along the optimal
trajectories:
1.H(x,∇V,φ,ψ∗) ≤ H(x,∇V ,φ∗,ψ∗) ≤ H(x,∇V ,φ∗,ψ)

2. H(x,∇V ,φ∗,ψ∗) = 0
The first condition means that any unilateral deviation

by the pursuer leads to a smaller Hamiltonian value (and
any unilateral deviation by the evader leads to a larger
Hamiltonian value), which is the Nash equilibrium defini-
tion. The second condition means that when both players
use their optimal controls, the Hamiltonian is zero.
The method used by Isaacs has the following steps:

• First, the system states must be defined, and a
dynamics equation that relates states with controls
must be obtained. This dynamics equation will have
the following form:

dx(t)
dt

= f (x(t),φ(t),ψ(t)) (5)

• Secondly, the Hamiltonian must be built and
optimized. This is done using Isaacs “main equation
1,” which is the Hamiltonian:

max
ψ

min
φ

∑
i
Vxi fi + L = 0 (6)

where Vxi stands for the partial derivative, that is,
Vxi = ∂V

∂xi , and fi is the i th component of
f (x(t),φ(t),ψ(t)) Eq. (5). This expression must be

solved in order to obtain the optimal controls. These
are substituted into the Hamiltonian to obtain the
optimal Hamiltonian, denoted by H∗.

• Thirdly, the optimal trajectories are obtained using a
backward procedure in which the retrogressive path
equations (RPE) play a key role. These equations are a
function of retro-time τ , which is the time-to-go,
obtained using the following variable change:

τ = tf − t (7)

where tf is the termination time of the game.
Intuitively, τ is a backward time: it goes from final
time tf until initial time t = 0. Hence, initial
conditions in τ will be final conditions in time.
There will be two different RPEs. The first kind
depends on the states and are obtained from the
dynamics in Eq. (5). These RPEs have the following
form:

dx(t)
dt

= f (x(t),φ(t),ψ(t)) = −dx(τ)

dτ
= ˚x(τ)

(8)

where x̊ denotes the derivative of x with respect to
retro-time τ and x(τ) = x(t)|t=τ . That means that
these RPEs are obtained changing the sign of the
dynamic equation.
The second kind of RPEs depend on the gradient of
the value function. Along the optimal trajectory, the
following adjoint equation holds:

d
dt

∇V [x(t)]= − ∂

∂x
H(x,∇V ,φ∗,ψ∗) (9)

Using Eq. (7), the adjoint equation becomes:

d
dτ

∇V [x(τ)]= ∂

∂x
H(x,∇V ,φ∗,ψ∗) (10)

Hence, the RPEs related to the gradient are also
related to the left-hand side of the “main equation”
(ME) (6), according to this expression [8, p. 82]:

V̊k = ∂H
∂xk

= ∂ME
∂xk

(11)

where xk refers to the states.
• In order to solve the RPEs, initial conditions in

retro-time are needed. The terminal surface is
defined as a manifold, denoted by h, which is
parametrized using n − 1 variables (where n is the
number of states). Each of these variables will be
called si, i ∈ 1, ..., n − 1. These will be initial
conditions in τ (in time t, they are final condition),
and they are obtained using the following expression:

∂G
∂sk

=
∑
i
Vxi

∂h
∂sk

(12)

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 5 of 15

where G is the final cost of the game considered, h
the terminal manifold, and sk the variables used to
describe this manifold.

• Once those final conditions in time are obtained, the
RPEs are integrated in order to find out the optimal
trajectories and the optimal controls for the posed
game. However, these trajectories will be function of
final time conditions, but we only know initial time
conditions. In order to solve this problem, the final
time tf must be obtained in order to get a system of
equations that may allow us to obtain these final
conditions in time from the initial ones. In doing this,
the following vectorial identity is used, where s are
the final conditions, initial state x0 are the initial
conditions, and T are the trajectories obtained after
integrating the RPEs. The solutions of this equation
system are the final conditions, depending on initial
ones; by substituting these values on the trajectories
equations, the dependency on initial conditions
appears.

T(τ , s) = T(tf − t, s) = T(tf , s) = x0 (13)

2.6 Comparison of Isaacs with Bellman and Pontryagin
approaches

Isaacs’ method described above is closely related to
Pontryagin approach to solve games. If we compare
Theorem 1 with Isaacs equations, it is possible to see that
the first point of the theorem corresponds to Isaacs’ main
equation 1 (6), the second one is the dynamics equation
as appears in Eq. (5), and the third point is the adjoint
equation which Isaacs includes in Eq. (9). Pontryagin uses
costate functions, that he calls �(t), which can be identi-
fied with the gradient of the value function ∇V that Isaacs
uses. Also, the final conditions on costate functions from
Pontryagin and gradient of the value function that Isaacs
used are obtained through partial derivatives of the final
cost, as in Eq. (12) and the fourth point of Theorem 1.
Hence, it is possible to see that Isaacs equations are

actually a particularization of Pontryagin’s method, for the
concrete case that the game is zero-sum and two play-
ers and that controls are separable. Thus, it can be used
to obtain open-loop solution to games that fall into this
category.
Isaacs method is also related to Bellman method. Let

us start from Hamilton-Jacobi-Bellman (HJB) equation,
which comes from the first point in Theorem 2, using the
definition of Hamiltonian from Eq. (4):

H∗ + ∂V
∂t

= 0 (14)

Isaacs’ main equation [8, p. 67] can be seen as a particu-
lar case, when ∂V

∂t = 0 , and hence,H∗ = 0. Also, the game

must be two players, zero-sum, and pursuit-evasion type,
and its Hamiltonian must be separable on its controls.
Thus, if V, the game value function, does not depend

explicitly on time, and these conditions are satisfied,
Isaacs approach becomes also a particularization of Bell-
man equation (as it was expected: even the basis of their
equations, Isaacs’ “Tenet of transition” [8] and Bellman’s
“Principle of Optimality” [2], are very similar). This condi-
tion is also satisfied, according to [7, p. 36], when the opti-
mal control problem that is being solved is time-invariant
and the final time is free, i.e., needs to be optimized. This
is extended to differential games [1, p 223]: a game is time-
invariant if time does not appear explicitly as a variable in
dynamics equation, running and terminal costs, and ter-
mination condition. In that case, partial derivative of value
function with respect to time will be zero.
The drawbacks that arise when using Pontryagin’s

method to solve closed-loop games (Section 2.3) would
also affect Isaacs equations. Hence, they are usually only
employed to solve open-loop games. Yet, as it is described
in [1, pp 345-350], the solutions to some pursuit-evasion
games are usually first obtained in open-loop strategies
and then synthesized to feedback strategies, provided that
both exists. Hence, in pursuit-evasion games, open-loop
and feedback solutions are related. Bellman approach pro-
vides a sufficiency condition for saddle-point strategies,
but his main drawback is that the value function V is gen-
erally not known ahead of time. In order to overcome this,
Pontryagin method is used in order to obtain a set of nec-
essary conditions for an open-loop representation of the
feedback solution: if both open-loop and feedback equi-
libria exist, Pontryagin will lead to the desired solution.
Hence, in these games, it is usual obtaining an open-
loop representation of the solution, which then can be
synthesized to obtain the feedback strategy. This is the
main contribution of Isaacs method: obtaining open loop
solution for games that fall into the category of pursuit-
evasion, thus providing a simpler method than Bellman’s
equation.

3 Problem description
3.1 Capacity approximation
In this section, we pose a capacity game. Let us suppose
that there are two UAVs and a high number of receivers,
which can be static or dynamic. The communicator tries
to communicate with the receivers, whereas the jammer
tries to jam this communication. Thus, both players have
opposite objectives, and hence, a zero-sum game between
them is posed.
The total capacity in this scenario can be computed

as the sum of the different capacities at each receiver.
Considering a free-space propagation model, orthogonal
modulation, and using Shannon’s capacity formula, the
total capacity per bandwidth unit of the system depends

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 6 of 15

on the signal to interference plus noise ratio (SINR) as
follows:

Ct =
N∑
i=1

log2(1+SINRi) =
N∑
i=1

log2

⎛
⎜⎝1 +

Pc
d2c,ri

N0 + Pj
d2j,ri

⎞
⎟⎠

(15)

In the expression before, Pc and Pj are the communi-
cator and the jammer transmission fixed power, respec-
tively; dc,ri and dj,ri are the euclidean distances between
the communicator or the jammer and receiver i, respec-
tively, considering that there areN receivers; andN0 is the
noise floor power. The jammer sends a signal that is seen
as interference by the communicator and the receivers:
this jamming is referred to as trivial jamming [3]. The
effectiveness of the jamming will be measured using the
SINR. We consider that jamming is effective when SINR
falls below a certain level threshold SINRmin.
In order to optimize the expression in Eq. (15), it would

be necessary to know the position of each receiver in every
time instant (and their dynamics if they were mobile). If
there is no knowledge about receiver positions, a different
approach is required. Let us suppose that receivers and
UAVs move in the R3 Cartesian space; thus, in every time
instant, the position is defined by the vector (x, y, z). Let us
assume that both UAVs move on the same plane (i.e., they
have constant z-coordinate) and that all mobile receivers
alsomove on the same plane, being ε the distance between
the plane of receivers and the UAVs plane. This situation
is shown in Fig. 1.
We assume that the communication channel is

interference-limited [10, 22], that is, the jamming power
is much higher than thermal noise. That means that
Pj
d2j,ri

 N0. Hence, the SINR can be approached by the
SIR—that is, we neglect the noise term in Eq. 15. If the
receiver positions in the plane are considered to be a ran-
dom vector S = (Sx, Sy), with arbitrary probability density

Fig. 1 Problem situation: there is a z constant plane where UAVs
move and a receiver plane. The distance between planes is ε

function pi(Sx,i, Sy,i), the game payoff can be computed as
the mathematical expectation of the SIR as follows:

E{Ct(Sx, Sy)} ≈
∫ ∫ N∑

i=1
log2

(
1 + Pc

Pj

d2j,ri(S)
d2c,ri(S)

)
pi(Sx,i, Sy,i)dSi

(16)

where dSi = dSy,idSx,i, and d2c,ri(S) = (xc − Sx,i)2 + (yc −
Sy,i)2 + ε2 and d2j,ri(S) = (xj − Sx,i)2 + (yj − Sy,i)2 + ε2

are, respectively, the distance between the communica-
tor or the jammer and receiver i, whose plane coordinates
are (Sx,i, Sy,i). If the random variables Si are considered to
be independent and identically distributed (i.i.d.), assum-
ing that receivers follow a uniform distribution over a
square region in the interval [−D,D] in coordinatesX and
Y and assuming that this square region is much larger
than the zone in which UAVs move and also much larger
than ε, as it is shown in [18], the expression in Eq. (16) is
approximated as:

Ê{Ct(Sx, Sy)} = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
log2

(
1 + Pc

Pj

)
+

Pj
Pc r arcsinh

⎛
⎝D

(
1+ Pj

Pc

)
√

Pj
Pc r

⎞
⎠

2D2
(
1 + Pj

Pc

)2
log(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where r = (yc − yj)2 + (xc − xj)2. Hence, the capacity
depends on r, the squared norm of the vector pointing
from the communicator to the jammer. The jammer wants
to minimize capacity and that means trying to be spatially
close to the communicator, whereas the communicator
tries to maximize capacity and that means being spatially
as far as possible from the jammer.

3.2 Hyperbolic arcsine linearization
The expression in Eq. (17) can be further simplified lin-
earizing the hyperbolic arcsine term. In order to do so, let
us consider the following expression:

g1(r) = rarcsinh
(

K√
r

)
(18)

where K is a constant, that, in Eq. (17), is:

K =
D

(
1 + Pj

Pc

)
√

Pj
Pc

(19)

We want to fit this function using a linear expression,
that is:

g2(r) = mr + b (20)

where m is the slope of the line and b is the intercept. In
order to approximate this function, we must obtain the

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 7 of 15

optimal parameters m and b that satisfy the optimization
problem:

min
m,b

∫ D

0

(
mr + b − rarcsinh

(
K√
r

))2
dr (21)

That is, we want to minimize the squared error between
the original function and the fit, considering that the dis-
tance between players r is between 0 and D. Minimizing
in a grid over K, b, and m and adjusting the results in the
least squared sense, we obtain the following expressions:

m(K) = log(0.1824K + 0.4823)
b(K) = 0.0069K + 14.4070

(22)

Finally, the relative error is computed using m(K) and
b(K) from (22) as:

ζ =

√∫ D
0

(
m(K)r + b(K) − rarcsinh

(
K√
r

))2
dr

∫ D
0 rarcsinh

(
K√
r

)
dr

(23)

The relative error obtained in our simulations is always
inferior to 1% and is monotone decreasing with K. Hence,
applying the expressions in Eqs. (22), (20), and (19) to
simplify Eq. (17) yields the following simplified, linear
expression for the capacity:

Ê{Ct(Sx, Sy)} ≈ Ar + B (24)

whose slope and intercept are:

A = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
log2

(
1 + Pc

Pj

)
+

Pj
Pc

⎛
⎜⎝0.0069D

(
1+ Pj

Pc

)
√

Pj
Pc

+ 14.4070

⎞
⎟⎠

2D2
(
1 + Pj

Pc

)2
log(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B = N

Pj
Pc

⎛
⎜⎝log

⎛
⎜⎝0.1824

D
(
1+ Pj

Pc

)
√

Pj
Pc

+ 0.4823

⎞
⎟⎠

⎞
⎟⎠

2D2
(
1 + Pj

Pc

)2
log(2)

(25)

4 Pursuit-evasion game of two UAVs
4.1 Introduction
In this section, the two-person, zero-sum, pursuit-evasion
game that appears when approximating the problem
described in Section 3 will be solved using Isaacs’ method,
described in [8, Chap. 4], as a pursuit-evasion game, with
running cost L = 1. The solution to the capacity game
involves that the jammer tries to be close to the commu-
nicator and the communicator tries to be far away from
the jammer. This is also the idea in pursuit-evasion games,
yet in these games, the payoff is not in terms of capac-
ity, but in terms of capture time (Section 2), and hence,

the running cost is L = 1 in these games. In this case, we
are using a surrogate function approach, which gives an
approximation of the solution.
We consider each UAV to have a constant acceler-

ation, that will be Fp for the pursuer and Fe for the
evader. A friction limit will be used, for the speed not
to grow unbounded, denoted by kp and ke for the pur-
suer and evader, respectively. Therefore, the maximum
speed will be F/k. This setup is an extension to Isaacs
“isotropic rocket” game [8, pp. 105–116], but considering
that pursuer and evader have the same dynamics: constant
acceleration and bounded speed.

4.2 Dynamics of the UAVs
Each player control variable will be their heading angle
with respect to y-axis, which will be noted φ for the pur-
suer andψ for the evader. Considering that there are eight
states, which will be the position (x and y coordinates) and
the velocities (u and v, which are the velocity components)
of the pursuer and evader, the dynamics are:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋp
ẏp
u̇p
v̇p
ẋe
ẏe
u̇e
v̇e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

up
vp

Fp sin(φ) − kpup
Fp cos(φ) − kpvp

ue
ve

Fe sin(ψ) − keue
Fe cos(ψ) − keve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

4.3 Game solution
We have already posed and solved this game in [18] using
Isaacs’ equations. The optimal control and trajectories
obtained depend on the final conditions of the game.
In order to determine these final conditions, we must

define the terminal surface (i.e., the surface where the
pursuer captures the evader), which we will call h. By con-
sidering that the capture distance is l, the surface capture
will be the ball whose center is the evader position: when
the pursuer enters that ball, the game ends and capture
occurs. Hence, the termination surface will be the sphere
in which the distance between the pursuer and the evader
equals l, the capture distance. It can be parameterized
using n − 1 variables (where n is the number of states) as
follows, where we recall that si are the final time condition
variables:

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xp
yp
up
vp
xe
ye
ue
ve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4

s1 + l sin(s5)
s2 + l cos(s5)

s6
s7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 8 of 15

In [18], it was shown that the optimal controls are:

cos(φ∗) = cos(s5) sin(φ∗) = sin(s5)
cos(ψ∗) = cos(s5) sin(ψ∗) = sin(s5)

(28)

where s5 is the final heading angle of each player, which is
the same for both of them. Hence, both optimal controls
are constant and equal to both players.The same solution
is obtained in the original setup [8, p. 109], though the
dynamics are different in this setup.
Finally, the optimal trajectories were obtained in [18]:

xp = s1 + s3
1 − ekpτ

kp
+ Fp sin(s5)

ekpτ − 1 − kpτ
k2p

up = s3ekpτ + Fp sin(s5)
1 − ekpτ

kp

xe = s1+l sin(s5)+s6
1 − ekeτ

ke
+ Fe sin(s5)

ekeτ − 1 − keτ
k2e

ue = s6ekeτ + Fe sin(s5)
1 − ekeτ

ke
(29)

where yp, vp, ye , and ve have similar expressions, but
sin(s5) is replaced by cos(s5), s1 by s2, s3 by s4 , and s6 by s7.

4.4 Analytical solution to the system
The equations in Eq. (29) give the optimal trajectories
for both players, depending on the parameters used to
describe the terminal sphere and the retro-time τ , which
are unknown. Since initial conditions are known (i.e, ini-
tial positions and speeds of both players), it is possible
to obtain these parameters by equaling the equations in
Eq. (29) to the initial conditions and particularized to t =
0, that is, τ = tf − t = tf .
This system, is nonlinear and trigonometric and may be

hard to solve. To simplify its resolution, we apply the same
procedure that Isaacs used [8, pp. 110–111]: the final time
tf is obtained from the initial conditions and game param-
eters by squaring and adding these two identities and by
using that cos2(α) + sin2(α) = 1:

�x − up

(
e−kpτ − 1

kp

)
+ ue

(
e−keτ − 1

ke

)
= sin(s5)Q(τ)

�y − vp

(
e−kpτ − 1

kp

)
+ ve

(
e−keτ − 1

ke

)
= cos(s5)Q(τ)

(30)

where �x = xp − xe, �y = yp − ye and:

Q(τ) = Fe(e−keτ − 1 + keτ)

k2e
−l− Fp(e−kpτ − 1 + kpτ)

k2p
(31)

The resulting expression, which is in Eq. (32), only
depends on known initial conditions and game parame-
ters, and hence, it is a nonlinear function of τ . By solving
for τ , that is, g(τ) = 0, the τ obtained will be the final time
of the game, that is, τ = tf .

g(τ) =
(
xp − xe − up

(
e−kpτ − 1

kp

)
+ue

(
e−keτ − 1

ke

))2

+
(
yp − ye − vp

(
e−kpτ − 1

kp

)
+ve

(
e−keτ − 1

ke

))2

− Q(τ)2

(32)

Once that tf has been obtained, it can be replaced in
the system in Eq. (29). If this system is particularized for
the initial time conditions, doing the following variable
change, w1 = cos(s5),w2 = sin(s5), yields a linear system
which can be solved using standard techniques (recall that
w2
1 + w2

2 = 1). An illustration of these steps is shown in
Algorithm 1.

Algorithm 1 Steps for the analytical approach
1: Obtain initial conditions and game parameters
2: Obtain final time using Eq. (32)
3: Solve the equation system in Eq. (29) using Eq. (13) to

obtain final time conditions from initial ones
4: Compute optimal trajectories using final conditions

obtained with Eq. (29)

4.5 Optimization solution to the system
The technique proposed in the section before to solve the
equations system in Eq. (29) has a big drawback: due to
the exponentials involved in the system, the solution is not
always found by the computer. A different approach can
be done in order to obtain the final conditions from the
initials, based on searching an optimum of a cost function.
We do a search over a two-dimensional surface: since

we know the initial conditions of the game, the trajecto-
ries can be computed numerically using the expressions in
Eq. (26). To do so, a Runge-Kutta method is used to solve
the differential equations that control the dynamics of the
UAVs. Only two parameters are needed to obtain these
trajectories: the final time tf and the final heading angle s5.
After numerically obtaining the trajectories, congru-

ency is checked: in final time, capture occurs and heading
angle corresponds to s5. If both conditions happen, then
the point is a candidate to be a solution to the game.
We implement this approach in order to obtain the

game solution. The numerical ODE solver chosen is a
Runge-Kutta one, based on Dormand-Prince (4, 5) pair
[6]. The duple (s5, tf) that is considered the solution is

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 9 of 15

chosen as the duple where capture happens, that is, final
distance between players is equal or smaller than cap-
ture distance l , and which has the smaller absolute error
between the final heading angle obtained in the trajecto-
ries and the introduced a priori in the duple. The final
heading angle can be obtained from Eq. (27) as:

ŝ5 = arctan
(xe,f − xp,f
ye,f − yp,f

)
(33)

where xe,f , xp,f , ye,f and yp,f are the final points in the
trajectories numerically obtained.
Finally, we put these conditions in a cost function which

we minimize. Its form is:

fc,1 = k1
1 + e−k2(df −l) + k3|s5 − ŝ5| (34)

where k1, k2 , and k3 are constants; df is the final distance
between players, computed using the trajectories values; l
is capture distance; s5 is the final heading angle supposed
a priori; and ŝ5 is the final heading angle, computed with
the trajectories using Eq. (33).
The first term is an analytic and smooth approximation

for the Heaviside step function, when k1 = 1. The param-
eter k2 controls how sharp the transition will be in df = l:
larger values of k2 give a sharper transition, closer to the
ideal but non-smooth step function.
For adequate values of the constants k1, k2 , and k3, it is

possible to get the cost function that we need. If df > l,
the exponential argument is negative and hence small, so
the first term is approximately k1. If k1 > k3|s5 − ŝ5|, then,
the value tends to be k1. This is the case where capture
does not occur.
If capture occurs, df < l , and hence, the exponential

argument is positive. For sufficiently high values of k2, the
first term of the cost function vanishes, and hence, the cost
function tends to be k3|s5− ŝ5|. This means that when cap-
ture occurs, the cost is proportional to the absolute error
between heading angles, as we intended.
Hence, the cost function defined in Eq. (34) will be

used for the two dimensional search proposed. We con-
sider that the constants are k1 = 1, k2 = 500 ,
and k3 = 1. The non-convex algorithm Simultaneous
Optimistic Optimization (SOO) details can be found in
[14, 15]. This algorithm is used in order to obtain the game
solution—i.e., final heading angle, which is the control,
and time of capture, which is the payoff of the game. An
illustration of these steps is found in Algorithm 2.

4.6 Hybrid solution to the system
An intermediate approach between the analytical and the
optimization methods proposed in the previous sections
can also be considered. It consists in simplifying the two-
dimensional optimization method by computing the right
tf using Eq. (31). Hence, in this case, we first obtain the

Algorithm 2 Steps for the optimization approach
1: Obtain initial conditions and game parameters
2: while Cost in (34) is greater than threshold do
3: Guess a pair (s5, tf)
4: Solve ODE system numerically from (26), using the

(s5, tf) pair guessed
5: Obtain capture time and ŝ5 from trajectories using

(33)
6: Compute cost for the pair (s5, tf) using (34)
7: end while
8: The pair (s5, tf) is correct: optimal trajectories are

obtained by solving ODE system numerically from
(26), using that (s5, tf) pair
{SOO is used in steps 2-7}

final time analytically, by numerically solving Eq. (31),
and afterwards, we perform a minimization of the cost
function defined in Eq. (34) over the final heading angle s5.
This approach needs less iterations of the optimization

algorithm, and hence, it is faster at the cost of having
to solve numerically the expression shown in Eq. (31) in
order to obtain the optimum final time. An illustration of
these steps is found in Algorithm 3.

Algorithm 3 Steps for the hybrid approach
1: Obtain initial conditions and game parameters
2: Obtain final time using Eq. (32)
3: while Cost in Eq. (34) is greater than threshold do
4: Guess a value for s5
5: Solve ODE system numerically from Eq. (26), using

the tf computed and s5 guessed
6: Obtain capture time and ŝ5 from trajectories using

Eq. (33)
7: Compute cost for the pair (s5, tf) using Eq. (34)
8: end while
9: The pair (s5, tf) is correct: optimal trajectories are

obtained by solving ODE system numerically from
Eq. (26), using that (s5, tf) pair
{SOO is used in steps 3–8}

4.7 Simulation 1: comparison between analytical,
optimization, and hybrid solution approaches

In this section, the three methods proposed in
Sections 4.4, 4.5, and 4.6 are implemented and com-
pared. In order to do so, a grid has been defined over the
initial position conditions, taking the following values:
xe,0, ye,0 ∈ {1, 6, 11}, xp,0, yp,0 ∈ {−10,−5, 0}. Each one
of these four initial conditions can take three possible
values on the grid, and hence, it has 81 points. The rest
of the parameters are ue,0 = ve,0 = 1, up,0 = vp,0 = −1,

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 10 of 15

vmax,e = 1, vmax,p = 2, Fe = Fp = 1, l = 1, D = 100,
N = 100, Pj = 1.11 , and Pc = 1 , using a SINR threshold
of SINRmin = 1 in the receivers for communications to be
considered successful.
The non-convex optimization algorithm implementa-

tion used [14, 15] in the optimization and hybrid methods
stops when a fixed number of iterations have been done,
regardless of whether a solution was found or not. In
order to study how the iteration number affects to solution
obtaining, we run the algorithm three times for optimiza-
tion method (using {103, 104, 105} iterations) and for the
hybrid approach (using {102, 103, 104} iterations).
A point is considered to be a valid solution after iterating

if its cost from Eq. (34) is smaller than a threshold. Since
the cost will be smaller than one if and only if capture
happens, we set 0.9 as threshold. In order to compare the
different methods, we define the relative distance between
the solutions given by each method as:

drel = ||x̂ − x̃||2
||x̂||2 (35)

where ||x||2 is the Euclidean norm of vector x; x̂ is the
solution vector that the analytical method provides—its
two components are final heading angle and final time,
x̂ = (tf , s5); and x̃ is the solution vector that either opti-
mization or hybrid method gives. Hence, this is a relative
measure of how far are the solutions: a smaller value
means that solutions found are close between themethods
tested. Our simulations show that for the hybrid method,
this relative distance is always inferior to 0.05%; for the
optimization approach, it is always below 3.5%.
Finally, Table 1 presents the results obtained with each

method. It is possible to see that the hybrid method yields
the highest number of solutions found, being able to find
all the solutions for the proposed grid points. The second
best solution is the analytical method, and the worse in
number of solutions found is the optimization approach.
Comparing all the approaches, it is possible to see that

the hybrid method yields better performance than the
optimization method. The drawback is that it needs to

Table 1 Comparison of analytical, optimization, and hybrid
approaches for finding the solutions to the game

Grid points where
solution was found

Percent

Analytical approach 80 98.8

Optimization approach 103 iterations 9 11.1

104 iterations 21 25.9

105 iterations 33 40.7

Hybrid approach 102 iterations 59 72.8

103 iterations 80 98.8

104 iterations 81 100

solve a nonlinear expression for final time, but it achieves
a solution with a smaller relative distance and it takes
less iterations—which means less computation cost and
time. Finally, analytical method is the fastest, but due to
the nonlinearity of the system to be solved, a solution is
not always achieved—in the proposed grid, though, that
happened only once.

5 Capacity game of two UAVs
5.1 Introduction
In this section, Isaacs’ method, described in [8, Chap. 4],
will be used to solve the linear approximation of the capac-
ity game described in Section 3. The running cost L will
be considered to be linear Eq. (24):

L = A + Br

where r = (yc − yj)2 + (xc − xj)2, A and B are constants
whose expressions are in Eq. (25). The final cost G will
be considered to be zero. As in Section 4, we consider
each UAV to have a constant acceleration and a friction
limit. Again, this setup is an extension to Isaacs “isotropic
rocket” game [8, pp. 105–116], but considering that pur-
suer and evader have the same dynamics and using a
different running cost.

5.2 Dynamics of the UAVs
We consider the player to have the same control variable
as in the previous section, which will be their heading
angle with respect to y-axis. Hence, there will be eight
states, as in the previous case, and the dynamics of pursuer
and evader are the same as in Eq. (26).

5.3 Control optimization
Building the Hamiltonian using Isaacs “main equation” [8,
p. 67] yields:

max
ψ

min
φ

Vxpup + Vypvp + Vup(Fp sin(φ) − kpup)

+Vvp(Fp cos(φ) − kpvp) + Vue(Fe sin(ψ) − keue)
+Vxeue+Vyeve + Vve(Fe cos(ψ) − keve) + A + Br = 0

Using that controls are separable:

min
φ

(
Vup(Fp sin(φ) − kpup) + Vvp(Fp cos(φ) − kpvp)

)

+ max
ψ

(
Vue(Fe sin(ψ) − keue) + Vve(Fe cos(ψ)−keve)

)

+ A + Br + Vxpup + Vypvp + Vxeue + Vyeve = 0
(36)

The optimization problems in Eq. (36) is solved using
the same approach as in Section 4.3, and the Hamiltonian

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 11 of 15

Eq. (36) becomes:

A + Br+Vxpup + Vypvp − ρpFp − kp(Vvpvp + Vupup)
+Vxeue + Vyeve + ρeFe − ke(Vveve + Vueue) = 0

(37)

5.4 Retrogressive path equations
The sixteen retrogressive path equations (RPE) are
obtained using the same expressions in Eqs. (8) and
(11). The eight equations that depend on the dynamics
equation are the following:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̊p
ẙp
ůp
v̊p
x̊e
ẙe
ůe
v̊e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−up
−vp

Fp sin(φ) + kpup
Fp cos(φ) + kpvp

−ue
−ve

−Fe sin(ψ) + keue
−Fe cos(ψ) + keve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)

were x̊ denotes derivative of x with respect to τ .The eight
RPEs that depend on the gradient of the value function
are obtained through derivation of the Main Eq. (37) with
respect to each state variable. The resulting RPEs are:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V̊xp
V̊yp
V̊up
V̊vp
V̊xe
V̊ye
V̊ue
V̊ve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2B(xe − xp)
−2B(ye − yp)
Vxp − kpVup
Vyp − kpVvp
2B(xe − xp)
2B(ye − yp)
Vxe − keVue
Vye − keVve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

These second group of RPEs are different from the ones
obtained in the game solved before because of using a
different running cost.

5.5 Final conditions
We consider that the capture distance is l and that the sur-
face capture will be the ball whose center is the evader
position and whose radius is l. Its parametrization can be
found in Eq. (27). Using Eqs. (27) and (12), taking into
account that the final cost G is zero, the final conditions
obtained are:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vxp + Vxe
Vyp + Vye

Vup
Vvp

Vxe l cos(s5) − Vye l sin(s5)
Vue
Vve

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)

From Eq. (40), the two first equations and the fifth show
that in the terminal sphere, −Vxp = Vxe = λ sin(s5) and

−Vyp = Vye = λ cos(s5), where λ is an auxiliary vari-
able. Also, from the rest of equations in Eq. (40) and that
ρp =

√
V 2
up + V 2

vp and ρe =
√
V 2
ue + V 2

ve , in the terminal
manifold, ρe = ρp = 0. Substituting all that in Eq. (37)
yields:

A + Br − λs3 sin(s5) − λs4 cos(s5)
+λs6 sin(s5) + λs7 cos(s5) = 0

(41)

Manipulating Eq. (41) gives the following result for λ:

λ = A + B
(
(yc − yj)2 + (xc − xj)2

)
(s3 − s6) sin(s5) + (s4 − s7) cos(s5)

(42)

where the value of r was substituted. The expression in the
denominator can be simplified: if final speeds of pursuer
and evader are called, respectively, vf ,p and vf ,e, we have
that:

s3 = vf ,p sin(s5) s4 = vf ,p cos(s5)
s6 = vf ,e sin(s5) s7 = vf ,e cos(s5)

(43)

Replacing and manipulating in Eq. (42), taking into
account that cos2(s5) + sin2(s5) = 1 yields the following
expression for λ:

λ = A + B
(
(yc − yj)2 + (xc − xj)2

)
vf ,p − vfe

(44)

5.6 RPEs integration
Let us start integrating the equations in Eq. (39). The four
equations for Vxe , Vye , Vxp , Vyp are solved using the initial
condition found in the previous section, and it yields:

−Vxp = Vxe = λ sin(s5) − 2Bτ(xp − xe)
−Vyp = Vye = λ cos(s5) − 2Bτ(yp − ye)

(45)

where λ is defined as in Eq. (44). The other four
RPEs in Eq. (39) are solved by replacing the values of
Vxe ,Vye ,Vxp ,Vyp that are in Eq. (45) and using the initial
conditions (in retro time) from Eq. (40).
The optimal controls can be obtained now: since ρp =√
V 2
up + V 2

vp and ρe =
√
V 2
ue + V 2

ve , substituting into the
integrated RPE equations yield the following expressions
for the controls:

cos(φ∗) = Aφ√
A2

φ+B2φ
sin(φ∗) = Bφ√

A2
φ+B2φ

cos(ψ∗) = Aψ√
A2

ψ+B2ψ
sin(ψ∗) = Bψ√

A2
ψ+B2ψ

(46)

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 12 of 15

where:

Aφ =
2B

(
ekpτ (kpτ −1)+1

)
(ye − yp) + kpλ

(
ekpτ − 1

)
cos(s5)

Bφ =
2B

(
ekpτ (kpτ −1)+1

)
(xe − xp) + kpλ

(
ekpτ − 1

)
sin(s5)

Aψ =
2B

(
ekeτ (keτ −1)+1

)
(ye − yp) + keλ

(
ekeτ − 1

)
cos(s5)

Bψ =
2B

(
ekeτ (keτ − 1)+1

)
(xe − xp) + keλ

(
ekeτ − 1

)
sin(s5)

(47)

It is possible to see that the optimal controls in Eq. (46)
are neither constant nor equal for both players, as it
happened in the problem in the previous section (see
Eq. 28). In this case, trajectories of both players are cou-
pled, and the game is still open loop: optimal trajectories
and controls, though coupled, can be obtained from initial
conditions of the game.
The complex expressions for the controls in Eq. (46)

causes that obtaining a closed expression for speeds and
trajectories is hard. Also, since the controls depend on
λ and λ depends on the final conditions in Eq. (44), if
there are no closed expressions for the trajectories, the
approach followed in Section 4.4 cannot be used to obtain
the final conditions using the initial conditions: for this
game, we have no analytical solution procedure. Hence,
in order to solve this game, a similar approach to the one
described in Section 4.5 will be used.

5.7 Simulation 2:optimization approach solution to
capacity game

In order to extend the approach proposed in Section 4.5 to
this capacity game, the same grid used there for the initial
conditions will be used here, that is, xe,0, ye,0 ∈ {1, 6, 11},
xp,0, yp,0 ∈ {−10,−5, 0}. The rest of the parameters are as
follows: ue,0 = ve,0 = 1, up,0 = vp,0 = −1, vmax,e = 1,
vmax,p = 2, Fe = Fp = 1, l = 1, D = 100, N = 100, Pj =
1.11 and Pc = 1, using a SINR threshold of SINRmin =
1 in the receivers for communications to be considered
successful.
The control equations in Eq. (46) will be used to numer-

ically solve the system in Eq. (26) and hence obtain the tra-
jectories. The numerical solver used is not the same that
was described in Section 4.5, since the ODE system might
become stiff, and hence, a different method is required
in order to be time-efficient. In this case, a variable-step,
variable-order solver based on the numerical differenti-
ation formulas of orders 1 to 5 is used, combined with
Gear’s method [23].

The non-convex optimization algorithm used will be the
same that was used in previous section (SOO). The search
will be performed over three dimensions, since there are
three initial parameters to be obtained: final heading angle
and final time (s5 and tf respectively), and the final differ-
ence of speeds, vf ,p−vfe , which is required to solve Eq. (44).
The number of iterations chosen are {103, 104, 105}.
Finally, the cost function will be adapted from Eq. (34) as:

fc2 = k1
1 + e−k2(df −l) +k3|s5 − ŝ5|+k4|�vf − �̂vf | (48)

where the first two terms are the same than in Eq. (34) and
the third one is due to the final difference of speeds, where
�vf corresponds to the final difference of speeds intro-
duced a priori, whereas �̂vf corresponds to the final dif-
ference of speeds in the trajectories numerically obtained.
Hence, this cost function tries to minimize the error
between final heading angle and final difference of speeds,
as well as adding a term if capture does not happen. In
this simulation, k1 = k3 = k4 = 1 and k2 = 500, and
the threshold in cost function Eq. (48) to consider a point
valid is 0.9 again. An illustration of the steps followed in
this method can be found in Algorithm 4.

Algorithm 4 Steps for the optimization approach
1: Obtain initial conditions and game parameters
2: while Cost in Eq. (48) is greater than threshold do
3: Guess a triple (s5, tf ,�v)
4: Solve ODE system numerically from Eq. (26), using

Eq. (46) and the (s5, tf ,�v) triple guessed
5: Obtain capture time, ŝ5 and �̂vf from trajectories
6: Compute cost for the triple (s5, tf ,�v) using

Eq. (48)
7: end while
8: The triple (s5, tf ,�v) is correct: optimal trajectories

are obtained by solving ODE system numerically from
Eq. (26), using that (s5, tf ,�v) triple
{SOO is used in steps 2-7}

Also, an approximation of this method will be tested.
If final time tf is sufficiently high for both players to be
able to accelerate until they reach their speed limits, it is
possible to approximate the final difference of speeds as
follows:

�̂v = vmax,p − vmax,e ≈ vf ,p − vfe (49)

Using this approximation allows to reduce the dimen-
sionality of the search to two dimensions, which means
a smaller computational cost and time because we only
search for final heading angle and final time. The cost
function used will be Eq. (48). Considering the final con-
ditions triplet (s5, tf ,�v), we use the relative distance in

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 13 of 15

Eq. (35) as the error metric, where x̂ is the triplet of
final conditions obtained with the optimization approach
and x̃ is the triplet of final conditions obtained with
the �̂v approximation, in which �v follows the expres-
sion in Eq. (49). Our simulations show that this error is
always smaller than 1.5%, and hence, �̂v approximation
is validated. An illustration for the steps followed in this
approximation can be found in Algorithm 5.

Algorithm 5 Steps for the �̂v approximation approach
1: Obtain initial conditions and game parameters
2: Obtain an approximation of �̂v using Eq. (49)
3: while Cost in Eq. (48) is greater than threshold do
4: Guess a pair (s5, tf)
5: Solve ODE system numerically from Eq. (26), using

Eq. (46), the (s5, tf) pair guessed and the �̂v approx-
imation

6: Obtain capture time, ŝ5 and �̂vf from trajectories
7: Compute cost for the triple (s5, tf ,�v) using

Eq. (48)
8: end while
9: The triple (s5, tf ,�v) is correct: optimal trajectories

are obtained by solving ODE system numerically from
Eq. (26), using that (s5, tf ,�v) triple
{SOO is used in steps 3–8}

The results obtained can be observed in Table 2 and
are similar to the ones in Table 1 for the optimization
approach. It is important to note that this game requires
more iterations than the one in Table 1, and hence, the
computational cost and time to solve this capacity game
increases with respect to the one in the previous section.
Also, we see that �̂v approximation is less computation-
ally costly: it yields more solutions with the same number
of iterations.

Table 2 Results obtained using optimization approach, with and
without �̂v approximation, for capacity game

Grid points where
solution was found

Percent

Optimization
approach

103 iterations 5 6.2

104 iterations 7 8.7

105 iterations 33 40.7

Optimization
approach, �̂v
approximation

103 iterations 11 13.6

104 iterations 44 54.3

105 iterations 73 90.1

6 Comparison between games proposed
In Section 3, the main problem was posed is a UAV tries
to communicate with some receivers, whereas another
UAV tries to jam that communication. Two different
approaches were used to solve the problem: a surrogate
function approach in Sections 4 and 5; the game was
solved in terms of capacity.
In this section, the trajectories and controls obtained in

both approaches will be compared. Since the simulations
done in the sections before were run on the same grid of
initial conditions for both games, it is straightforward to
compare the results.
First, in Fig. 2, it is possible to see two trajectories solved

using different approaches for the same initial conditions,
the first with a small relative distance and the second with
a high relative distance between trajectories. Solutions for
the game with running cost L = 1 were obtained with
hybrid method, whereas for game with running cost L =
A+Br, we use the optimization approach. It is possible to
see that for the game with running cost L = 1, the con-
trols are constant, whereas for the game with running cost

(a) (b)

(c) (d)

Fig. 2 Comparison of controls and trajectories obtained for games
with running cost L = 1 and L = A + Br. The initial grid conditions are
xe,0 = 1, ye,0 = 1, xp,0 = 0, yp,0 = −5 for case 1 and xe,0 = 6, ye,0 = 1,
xp,0 = −10, yp,0 = 0 for case 2. The rest of the parameters are
described in Section 5.7. The continuous blue line is the evader and the
dashed red line is the pursuer when L = 1, whereas the dotted blue line
is the evader and the dash-dot red line is the pursuer when L = A + Br.
On the trajectories representation, the circles represent initial
positions (blue for evader, red for pursuer) and black ellipses represent
the terminal surface. It is possible to see that differences in control are
small in case 2, and that means that trajectories are quite similar, but
in case 1, the control differences are bigger, and hence, trajectories
vary more. (a) Controls (case 1). (b) Trajectories (case 1). (c) Controls
(case 2). (d) Trajectories (case 2)

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 14 of 15

Table 3 Comparison of metrics over relative error in control,
computed using Eq. 50. The error is of the form (ζe , ζp): the error
of the evader and the error of the pursuer

Mean (%) Median (%) Standard
deviation (%)

Hybrid vs optimization
approach

(0.74, 0.74) (0.40, 0.40) (2.25, 2.25)

Hybrid vs �̂v
approximation

(1.12, 1.11) (0.21, 0.20) (5.70, 5.70)

L = A+Br, they are nearly constant. This small difference
causes speeds and trajectories to be slightly different.
Secondly, a quantification of how much different the

controls and trajectories are can be found in Table 3.
The metric used is relative error in controls, which is
computed as follows for the control of each player:

ζ = |α1 − α2|
α1

(50)

where α1 is the heading angle in the case where run-
ning cost L = A + Br and α2 is the heading angle when
L = 1. Since heading angle evolves with time in the first
case, the relative error is computed along the whole trajec-
tory for all the grid points of initial conditions on which
both methods reach a solution, and this vector of relative
errors is analyzed in Table 3. The methods compared are
the hybrid method when L = 1 and for the case when
L = A + Br, both the optimization approach and the
�̂v approximation are considered. In the first case, after
computing the empirical cumulative distribution func-
tion (CDF), more than 90% of the errors are below 0.5%,
whereas in the second case, more than 90% of the errors
are below 1%, as can be observed in Fig. 3. Hence, it is pos-
sible to approach the second game by the first one, without
getting an excessive error.

(a) (b)

Fig. 3 Comparison of empirical CDF for relative error between the
game with L = 1 and the game with L = A + Br, using Eq. 50. For the
game with L = 1, we used the hybrid approach. For the case when
L = A + Br, we used the optimization approach (blue continuous lines)
and the �̂v approximation (red dashed lines). It is possible to see that
in both cases, the CDF of the error shows that more than 90% of the
cases are below a relative error of ζ = 1%. (a) Evader. (b)Pursuer

7 Conclusions
We propose a new approach for solving games in scenar-
ios with stochasticity (i.e., scenarios in which there is some
randomness), which consists in solving a pursuit-evasion
game instead of a capacity one using an approximation. A
concrete application to a jamming game has been studied.
The steps we have followed are the following:

• The communications maximum capacity has been
computed in the environment we have posed. We
showed that this capacity can be approximated as a
linear function of the squared distance between
players.

• The game was solved as a standard pursuit-evasion
game, using a surrogate function approach. This
game was solved using three different approaches
(analytical, optimization, and hybrid).

• The game was also solved using the total system
capacity as the payoff, as a zero-sum game. This is be
the exact solution to the game we posed. We used two
approaches (optimization and �̂v approximation).

• Both games solutions were compared and it was
shown that both yield very similar results, having a
very small relative error. Hence, the capacity game
can be accurately approached as a standard
pursuit-evasion one and be efficiently solved.

Acknowledgements
This work was supported in part by the Spanish Ministry of Science and
Innovation under the grant TEC2013-46011-C3-1-R (UnderWorld), the
COMONSENS Network of Excellence TEC2015-69648-REDC, and by an FPU
doctoral grant to the fourth author.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Universidad Politécnica de Madrid, C-303, Avda Complutense 30, 28040
Madrid, Spain. 2Universidad Politécnica de Madrid, C-326, Avda Complutense
30, 28040 Madrid, Spain.

Received: 24 November 2016 Accepted: 4 April 2017

References
1. T Basar, GJ Olsder, Dynamic noncooperative game theory, vol. 23. (SIAM,

1999)
2. R Bellman, Dynamic programming, 1st edn. (Princeton University Press,

Princeton, 1957). http://books.google.com/books?id=fyVtp3EMxasC&pg=
PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#
v=onepage&q=dynamic%20programming%20richard%20e
%20bellman&f=false

3. S Bhattacharya, T Basar, in American Control Conference (ACC), 2010.
Game-theoretic analysis of an aerial jamming attack on a UAV
communication network (IEEE, 2010), pp. 818–823. http://ieeexplore.ieee.
org/abstract/document/5530755/

4. S Bhunia, X Su, S Sengupta, F Vázquez-Abad, in Distributed Computing and
Networking. Stochastic model for cognitive radio networks under

http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://books.google.com/books?id=fyVtp3EMxasC&pg=PR5&dq=dynamic+programming+richard+e+bellman&client=firefox-a#v=onepage&q=dynamic%20programming%20richard%20e%20bellman&f=false
http://ieeexplore.ieee.org/abstract/document/5530755/
http://ieeexplore.ieee.org/abstract/document/5530755/

Parras et al. EURASIP Journal onWireless Communications and Networking (2017) 2017:69 Page 15 of 15

jamming attacks and honeypot-based prevention (Springer, 2014),
pp. 438–452. https://books.google.es/books?hl=es&lr=&id=
fwC6BQAAQBAJ&oi=fnd&pg=PA438&dq=+Stochastic+model+for+
cognitive+radio+networks+under+jamming+968+attacks+and+
honeypot-based+prevention+(Springer,+2014),+pp.+438%E2%80
%93452&ots=Z5sfxArnn2&sig=1QojbKt3KqWOvm9ESqQEDWrr53c

5. A Bressan, Noncooperative differential games.a tutorial, (Department of
Mathematics, Penn State University, 2010). https://www.math.psu.edu/
bressan/PSPDF/game-lnew.pdf

6. JR Dormand, PJ Prince, A family of embedded runge-kutta formulae. J.
Comput. Appl. Math. 6, 19–26 (1980)

7. HP Geering, Optimal control with engineering applications, vol. 113.
(Springer, 2007). http://www.springer.com/br/book/9783540694373

8. R Isaacs, Differential games: amathematical theory with applications to
warfare and pursuit, control and optimization. (Courier Corporation, 1999).
https://books.google.es/books?hl=es&lr=&id=XIxmMyIQgm0C&oi=fnd&
pg=PA1&dq=differential+games+Isaacs&ots=WhR34ML8_v&sig=
hVOwUrKJ8YnHQo7Q7u3YeGLofQ0

9. S Karaman, E Frazzoli, in Algorithmic foundations of robotics IX. Incremental
sampling-based algorithms for a class of pursuit-evasion games (Springer,
2010), pp. 71–87. http://link.springer.com/chapter/10.1007/978-3-642-
17452-0_5

10. WC Lee,Mobile Communications Design Fundamentals. (John Wiley &
Sons, Inc., 1992). http://dl.acm.org/citation.cfm?id=530392

11. J Lewin, Differential games: theory andmethods for solving game problems
with singular surfaces. (Springer Science & Business Media, 2012). https://
books.google.es/books?hl=es&lr=&id=w9PiBwAAQBAJ&oi=fnd&pg=
PR15&dq=Differential+games:+theory+and+methods+for+solving+
game+problems+with+singular+surfaces&ots=5Izby-1Qcm&sig=
jBHfcVJFB1hQHEapn28M12YQ95I

12. H Li, Z Han, Dogfight in spectrum: Combating primary user emulation
attacks in cognitive radio systems, part i: Known channel statistics. Wirel.
Commun. IEEE Trans. 9(11), 3566–3577 (2010)

13. H Li, Z Han, Dogfight in spectrum: combating primary user emulation
attacks in cognitive radio systems, part ii: Unknown channel statistics.
Wirel. Commun. IEEE Trans. 10(1), 274–283 (2011)

14. R Munos, in Advances in Neural Information Processing Systems 24 (NIPS).
Optimistic optimization of a deterministic function without the
knowledge of its smoothness, (Granada, 2011), pp. 783–791. https://
papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-
function-without-the-knowledge-of-its-smoothness.pdf

15. R Munos, From bandits to monte-carlo tree search: The optimistic
principle applied to optimization and planning. Foundations and Trends
in Machine Learning. 7(1), 1–129 (2014)

16. JF Nash, et al., Equilibrium points in n-person games. Proc. Nat. Acad. Sci.
USA. 36(1), 48–49 (1950)

17. J Nash, Non-cooperative games. Annal math., 286–295 (1951). http://
www.jstor.org/stable/1969529

18. J Parras, J Del Val, S Zazo, J Zazo, S Valcarcel Macua, in Statistical Signal
Processing (SSP), 2016 IEEEWorkshop on. A new approach for solving
anti-jamming games in stochastic scenarios as pursuit-evasion games
(IEEE, 2016), pp. 1–5

19. A Pashkov, S Terekhov, A differential game of approach with two pursuers
and one evader. J. Optim. Theory Appl. 55(2), 303–311 (1987)

20. K Pelechrinis, M Iliofotou, SV Krishnamurthy, Denial of service attacks in
wireless networks: The case of jammers. Commun. Surv. Tutorials, IEEE.
13(2), 245–257 (2011)

21. LS Pontryagin,Mathematical theory of optimal processes. (CRC Press, 1987).
https://books.google.es/books?hl=es&lr=&id=kwzq0F4cBVAC&oi=fnd&
pg=PR11&dq=mathematical+theory+of+%C3%B3ptimal+processes&
ots=3nv3Yylc_f&sig=l_ywT5P3uudBZKH4nZW8rttd9Vo

22. TS Rappaort,Wireless communications: principles and practice.
(Prentice-Hall, 2002). https://nyu.pure.elsevier.com/en/publications/
wireless-communications-principles-and-practice-3

23. LF Shampine, MW Reichelt, The matlab ode suite. SIAM J. Sci. Comput.
18(1), 1–22 (1997)

24. S Shankaran, DM Stipanović, CJ Tomlin, in Advances in Dynamic Games.
Collision avoidance strategies for a three-player game (Springer, 2011),
pp. 253–271

25. W Wang, S Bhattacharjee, M Chatterjee, K Kwiat, Collaborative jamming
and collaborative defense in cognitive radio networks. Pervasive Mobile
Comput. 9(4), 572–587 (2013)

26. B Wang, Y Wu, K Liu, TC Clancy, An anti-jamming stochastic game for
cognitive radio networks. Sel. Areas Commun. IEEE J. 29(4), 877–889 (2011)

27. W Xu, T Wood, W Trappe, Y Zhang, in Proceedings of the 3rd ACMworkshop
onWireless security. Channel surfing and spatial retreats: defenses against
wireless denial of service (ACM, 2004), pp. 80–89

28. DW Yeung, LA Petrosjan, Cooperative stochastic differential games.
(Springer Science & Business Media, 2006). http://link.springer.com/
chapter/10.1007/0-8176-4501-2_7

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://books.google.es/books?hl=es&lr=&id=fwC6BQAAQBAJ&oi=fnd&pg=PA438&dq=+Stochastic+model+for+cognitive+radio+networks+under+jamming+968+attacks+and+honeypot-based+prevention+(Springer,+2014),+pp.+438%E2%80%93452&ots=Z5sfxArnn2&sig=1QojbKt3KqWOvm9ESqQEDWrr53c
https://books.google.es/books?hl=es&lr=&id=fwC6BQAAQBAJ&oi=fnd&pg=PA438&dq=+Stochastic+model+for+cognitive+radio+networks+under+jamming+968+attacks+and+honeypot-based+prevention+(Springer,+2014),+pp.+438%E2%80%93452&ots=Z5sfxArnn2&sig=1QojbKt3KqWOvm9ESqQEDWrr53c
https://books.google.es/books?hl=es&lr=&id=fwC6BQAAQBAJ&oi=fnd&pg=PA438&dq=+Stochastic+model+for+cognitive+radio+networks+under+jamming+968+attacks+and+honeypot-based+prevention+(Springer,+2014),+pp.+438%E2%80%93452&ots=Z5sfxArnn2&sig=1QojbKt3KqWOvm9ESqQEDWrr53c
https://books.google.es/books?hl=es&lr=&id=fwC6BQAAQBAJ&oi=fnd&pg=PA438&dq=+Stochastic+model+for+cognitive+radio+networks+under+jamming+968+attacks+and+honeypot-based+prevention+(Springer,+2014),+pp.+438%E2%80%93452&ots=Z5sfxArnn2&sig=1QojbKt3KqWOvm9ESqQEDWrr53c
https://books.google.es/books?hl=es&lr=&id=fwC6BQAAQBAJ&oi=fnd&pg=PA438&dq=+Stochastic+model+for+cognitive+radio+networks+under+jamming+968+attacks+and+honeypot-based+prevention+(Springer,+2014),+pp.+438%E2%80%93452&ots=Z5sfxArnn2&sig=1QojbKt3KqWOvm9ESqQEDWrr53c
https://www.math.psu.edu/bressan/PSPDF/game-lnew.pdf
https://www.math.psu.edu/bressan/PSPDF/game-lnew.pdf
http://www.springer.com/br/book/9783540694373
https://books.google.es/books?hl=es&lr=&id=XIxmMyIQgm0C&oi=fnd&pg=PA1&dq=differential+games+Isaacs&ots=WhR34ML8_v&sig=hVOwUrKJ8YnHQo7Q7u3YeGLofQ 0
https://books.google.es/books?hl=es&lr=&id=XIxmMyIQgm0C&oi=fnd&pg=PA1&dq=differential+games+Isaacs&ots=WhR34ML8_v&sig=hVOwUrKJ8YnHQo7Q7u3YeGLofQ 0
https://books.google.es/books?hl=es&lr=&id=XIxmMyIQgm0C&oi=fnd&pg=PA1&dq=differential+games+Isaacs&ots=WhR34ML8_v&sig=hVOwUrKJ8YnHQo7Q7u3YeGLofQ 0
http://link.springer.com/chapter/10.1007/978-3-642-17452-0_5
http://link.springer.com/chapter/10.1007/978-3-642-17452-0_5
http://dl.acm.org/citation.cfm?id=530392
https://books.google.es/books?hl=es&lr=&id=w9PiBwAAQBAJ&oi=fnd&pg=PR15&dq=Differential+games:+theory+and+methods+for+solving+game+problems+with+singular+surfaces&ots=5Izby-1Qcm&sig=jBHfcVJFB1hQHEapn28M12YQ95I
https://books.google.es/books?hl=es&lr=&id=w9PiBwAAQBAJ&oi=fnd&pg=PR15&dq=Differential+games:+theory+and+methods+for+solving+game+problems+with+singular+surfaces&ots=5Izby-1Qcm&sig=jBHfcVJFB1hQHEapn28M12YQ95I
https://books.google.es/books?hl=es&lr=&id=w9PiBwAAQBAJ&oi=fnd&pg=PR15&dq=Differential+games:+theory+and+methods+for+solving+game+problems+with+singular+surfaces&ots=5Izby-1Qcm&sig=jBHfcVJFB1hQHEapn28M12YQ95I
https://books.google.es/books?hl=es&lr=&id=w9PiBwAAQBAJ&oi=fnd&pg=PR15&dq=Differential+games:+theory+and+methods+for+solving+game+problems+with+singular+surfaces&ots=5Izby-1Qcm&sig=jBHfcVJFB1hQHEapn28M12YQ95I
https://books.google.es/books?hl=es&lr=&id=w9PiBwAAQBAJ&oi=fnd&pg=PR15&dq=Differential+games:+theory+and+methods+for+solving+game+problems+with+singular+surfaces&ots=5Izby-1Qcm&sig=jBHfcVJFB1hQHEapn28M12YQ95I
https://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-function-without-the-knowledge- of-its-smoothness.pdf
https://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-function-without-the-knowledge- of-its-smoothness.pdf
https://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-function-without-the-knowledge- of-its-smoothness.pdf
http://www.jstor.org/stable/1969529
http://www.jstor.org/stable/1969529
https://books.google.es/books?hl=es&lr=&id=kwzq0F4cBVAC&oi=fnd&pg=PR11&dq=mathematical+theory+of+%C3%B3ptimal+processes&ots=3nv3Yylc_f&sig=l_ywT5P3uudBZKH4nZW8rttd9Vo
https://books.google.es/books?hl=es&lr=&id=kwzq0F4cBVAC&oi=fnd&pg=PR11&dq=mathematical+theory+of+%C3%B3ptimal+processes&ots=3nv3Yylc_f&sig=l_ywT5P3uudBZKH4nZW8rttd9Vo
https://books.google.es/books?hl=es&lr=&id=kwzq0F4cBVAC&oi=fnd&pg=PR11&dq=mathematical+theory+of+%C3%B3ptimal+processes&ots=3nv3Yylc_f&sig=l_ywT5P3uudBZKH4nZW8rttd9Vo
https://nyu.pure.elsevier.com/en/publications/wireless-communications-principles-and-practice-3
https://nyu.pure.elsevier.com/en/publications/wireless-communications-principles-and-practice-3
http://link.springer.com/chapter/10.1007/0-8176-4501-2_7
http://link.springer.com/chapter/10.1007/0-8176-4501-2_7

	Abstract
	Keywords

	Introduction
	General framework of differential games
	Introduction to game theory
	Introduction to differential games
	Standard methods for solving differential games
	Pursuit-evasion games
	Isaacs' approach
	Comparison of Isaacs with Bellman and Pontryagin approaches

	Problem description
	Capacity approximation
	Hyperbolic arcsine linearization

	Pursuit-evasion game of two UAVs
	Introduction
	Dynamics of the UAVs
	Game solution
	Analytical solution to the system
	Optimization solution to the system
	Hybrid solution to the system
	Simulation 1: comparison between analytical, optimization, and hybrid solution approaches

	Capacity game of two UAVs
	Introduction
	Dynamics of the UAVs
	Control optimization
	Retrogressive path equations
	Final conditions
	RPEs integration
	Simulation 2:optimization approach solution to capacity game

	Comparison between games proposed
	Conclusions
	Acknowledgements
	Competing interests
	Publisher's Note
	Author details
	References

