
© 2019. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

Using One Class SVM to Counter Intelligent Attacks

against an SPRT Defense Mechanism

Juan Parras∗, Santiago Zazo

Information Processing and Telecommunications Center
Universidad Politécnica de Madrid
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Abstract

A widely used defense mechanism in current wireless sensor networks is based
on using a Sequential Probability Ratio Test (SPRT). This test does not
require a fixed sample size, and this reduces the number of communications
required and the battery consumption, both of which are of capital interest
in such networks. However, SPRT assumes that the distributions under test
do not change, and this assumption needs not hold for current attackers.

We divide this work in two parts, First, we develop an optimal attack
strategy against a Bernoulli SPRT mechanism which is used in many defense
mechanisms in current literature. The control law for such an attacker turns
out to be easy to implement and very effective, thus posing a significant
threat for the defense mechanisms that use such SPRT. Second, we make use
of One Class Supporting Vector Machines to obtain a modified SPRT test
that is able to detect, not only such an attacker, but potentially any other
attack mechanism that has not a similar spectrum to the expected signal
from normal sensors. Our work is validated via simulations, showing that
the attacker we propose is a real threat to SPRT mechanisms, but also, that
our proposed defense mechanism can efficiently cope with such an attacker.
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1. Introduction

The detection problem tries to characterize the statistical behavior of an
observed signal. This problem is usually posed as a hypothesis test (HT)
and has been widely studied in the signal theory field [1]. One of many
possible taxonomies to classify HT is based on the sample size: whether
needed number of samples to make a decision is fixed in advance or not. The
former case is the most usual: the well-known Neyman-Pearson HT belongs
to this kind [2], [1], among many others, such as Rao or Wald tests [3]. The
latter case is known as sequential hypothesis test, and traces back to the
work of Wald on the Sequential Probability Ratio Test (SPRT) [4] [5]. In an
SPRT, a sample from the signal of interest is collected at each time step n
and used to update a statistic. The updated statistic may be used either to
make a decision if a certain threshold is reached or to collect another sample.

The use of SPRT is, thus, very attractive in many scenarios, as in Wireless
Sensor Networks (WSN), in which the ability to make a decision requiring
fewer communications among sensors means a lower battery and bandwidth
consumption. SPRT also allows making a decision as soon as possible and
adapts easily to working with online data. However, SPRT assumes that the
underlying distribution of the signal under test does not change with time.
Since SPRT is widely used to detect malicious behavior, this means that the
malicious behavior is assumed to be static. In this work, we show that this is
a dangerous assumption that can be used to exploit such systems, and also,
we propose a defense mechanism that can be used to detect attacks which
need not be static with time.

1.1. Prior work

As mentioned before, the properties of SPRT make it ideal for WSN
applications, thus, it is no surprise that many WSN mechanisms make use
of it. It has been used for cooperative spectrum sensing, in which several
sensors send to a central entity their local spectrum sensing report and SPRT
mechanisms are used to do the information fusion [6], [7], [8]. In [9], [10] and
[11], SPRT is used for detecting sensors that have been compromised and
replicated. In [12] and [13], SPRT is used to detect a selective forwarding
attack, in which a compromised sensor drops packets. SPRT can also be
used for DDoS attack detection [14] and spam detection [15]. Thus, SPRT
finds many applications currently in WSN, specially when trying to detect a
malicious behavior.
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As we have mentioned, SPRT is valid only if the malicious behavior is
static, and hence, it would be possible to exploit an SPRT based defense
mechanism by means of a dynamic behavior attack. However, in many works
this limitation of SPRT is not taken into account. For instance, in [9], [7],
[11], [12] or [14], SPRT is used in environments in which the attackers may use
a dynamic attack strategy and hence, compromise the defense mechanism.

To the best of our knowledge, the only study on such dynamic attacks
on WSN is [16], where a cooperative spectrum sensing defense mechanism is
exploited using reinforcement learning tools. While that work is focused on a
concrete defense mechanism, ours focuses on the SPRT method, which is part
of many defense mechanisms. If such attackers became frequent, the defense
mechanisms would have to evolve in order to defend against such threats. In
current literature, there are several tools designed for dealing with changes
in the statistical behavior of a signal, such as quickest detection tools [17] or,
for discrete time signals, repeated hypothesis tests [18].

In this work, we make use of a well-known tool in the field of novelty
detection as the One Class Supporting Vector Machine (OCSVM)[19]. This
method allows detecting signals whose features differ from the ones with
which the OCSVM was trained [20]. In a misbehavior setting as ours, stan-
dard SVM needs to have access both to examples of normal and malicious
behavior, as in [21], and hence, it becomes specialized in detecting a single
attack type. However, the main advantage of OCSVM is that they need
only have access to normal behavior examples in order to be trained, which
in our security setting means that they could potentially detect any type of
misbehavior.

1.2. Contributions

The main contributions of our work are:

1. We obtain the optimal behavior that an attacker should follow to ex-
ploit a Bernoulli SPRT. We choose the Bernoulli distribution because
it appears in many WSN defense mechanisms, such as [15], [9], [7], [11],
[12] or [14].

2. We develop OCSVM-SPRT: a modification on the SPRT mechanism
that makes use of an OCSVM that is able to deal with the novel optimal
attacker we propose. Since an OCSVM is used, OCSVM-SPRT may
potentially deal with any attacker whose spectral features do not match
the ones of normal sensors.
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The rest of the paper goes as follows: in Section 2, we describe the SPRT
defense mechanism that we use throughout our work. Then, in Section 3, we
describe the attacker we propose. Section 4 obtains the optimal control law
that such an attacker should use against the SPRT mechanism described in
Section 2. After, Section 5 introduces and explains OCSVM-SPRT. Section
6 studies the performance of OCSVM as a function of its parameters, and
then, Section 7 presents a study case in which we analyze the performance of
OCSVM-SPRT in a cooperative spectrum sensing setup. Finally, Section 8
presents the advantages and disadvantages of our approach, as well as draws
some conclusions.

2. SPRT detection mechanism

We describe an SPRT based detection mechanism which is similar to the
one present in many current literature approaches, such as [15], [9], [7], [11],
[12], [14] or [10]. Even though concrete details differ between these works,
the main lines of the detection mechanisms are similar to the mechanism that
we introduce in this section. Also, note that though we only provide results
for this model, we strongly believe that they could be extended to different
signal characterizations (such as the one in [6]).

2.1. The detection problem

We assume a discrete time signal xn, where n = 0, 1, 2, ... is the time
index. The detection problem consists in collecting enough information in
order to decide between two hypotheses H0 and H1:{

H0 : xn ∼ Q0, n = 0, 1, 2, ...,
H1 : xn ∼ Q1, n = 0, 1, 2, ...,

(1)

where Q0 and Q1 are statistical distributions that characterize the behavior
of the signal xn under normal and malicious behavior respectively. In our
case, we assume that each xn follows a Bernoulli distribution of parameters
θ0 under H0 and θ1 for H1. The concrete malicious behavior varies depending
on the setting, for instance:

• In [10], the authors describe an attack in which sensors could have been
compromised. A compromised sensor would send a piece of information
x which can be accurate (x = 0) or inaccurate (x = 1). They try to
detect as soon as possible inaccurate sensors, and note that attacking
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sensors try to provide as much inaccurate information to the network
as possible.

• In [11], the authors also try to make a difference between legitimate
and illegitimate sensors in a network. In order to do so, they define
a binary variable x that combines information of distance and signal
power. Under this setting, an attacker tries not to be discovered while
trying to compromise other sensors, which means that they will often
cause x = 1.

• In [12], the authors try to detect a selective forwarding attack, in which
x = 0 denotes a successful forwarding and x = 1 a packet drop. Note
that an attacker tries to drop as many packets as possible.

• In [15], the authors propose a spammer detection algorithm, in which
x denotes whether the emails sent by a user are spam (x = 1) or not
(x = 0). A user which surpasses a certain threshold is blocked, hence,
a spammer will try to send as much spam as possible while also trying
not to be detected.

In all these cases, the condition θ0 < θ1 is satisfied. Thus, xn ∈ {0, 1},
and P (xn = 1) = θ and P (xn = 0) = 1 − θ. In other words, the malicious
behavior causes x = 1 to happen as often as possible.

In an HT, there are two different errors: the type I error or false alarm
probability is the probability H0 is rejected, provided that H0 is actually
true. The type II error is the probability of accepting H0, provided that H1

is actually true. We denote by α to the type I error probability and β to
the type II error probability. The values of α and β determine the stopping
rule that is used in the test. There is always a tradeoff between having a low
false alarm probability and a high power test, which is defined as 1− β and
is the probability of correctly rejecting the null hypothesis.

2.2. SPRT

The SPRT for our signal model presents the following test statistic for
the sample n:

LRn =
θsn1 (1− θ1)

n+1−sn

θsn0 (1− θ0)n+1−sn
(2)
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Figure 1: Illustration of an SPRT. The upper blue line is h, the lower blue line is l. The
black continuous line is the LLRn, the test statistic of the SPRT. The dashed line indicates
N − 1, the time in which a decision is made by the SPRT. In this case, since LLRn ≥ h,
H0 the test decision is to reject H0. Note that in samples n ≤ 7, SPRT does not have
enough information to make a decision and hence, another sample is collected.

where sn =
∑n

i=0 xi, sn ∈ [0, n + 1] and n ∈ {0, 1, ...}. It is usual working
with the log-likelihood ratio: the SPRT from (2) becomes:

LLRn = sn log

(
θ1
θ0

)
+ (n+ 1− sn) log

(
1− θ1
1− θ0

)
(3)

and the decision rules of test (3) can be approximated [5] as:
Reject H0 if LLRn ≥ h
Accept H0 if LLRn ≤ l
Take another sample if otherwise

(4)

where h and l are defined as:

h = log

(
1− β

α

)
, l = log

(
β

1− α

)
(5)

Note that (4) means that the SPRT procedure gathers new samples until
a certain threshold in the statistic LLRn is surpassed. An illustration is
found in Figure 1: note that LLRn produces a random walk: the SPRT is
finished when it surpasses a certain threshold. Also, note that we can rewrite
(3) as:

LLRn = sn log

(
θ1(1− θ0))

θ0(1− θ1)

)
+ (n+ 1) log

(
1− θ1
1− θ0

)
(6)

and then define:

A = log

(
θ1(1− θ0))

θ0(1− θ1)

)
, B = log

(
1− θ1
1− θ0

)
(7)

6

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adhoc.2019.101946


© 2019. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

we can rewrite (6) as:

LLRn = Asn +B(n+ 1) (8)

Also, a sequential formulation for (3) can be obtained by noting that:

LLRn =

{
LLRn−1 + A+B if xn = 1
LLRn−1 +B if xn = 0

(9)

or even more compactly as:

LLRn = LLRn−1 +B + Axn, LLR0 = B (10)

Note that (10) allows an easy and sequential implementation of the SPRT
test that we have defined, which updates the LLRn statistic using only simple
operations. In case that xn = 1 is received, the LLRn adds up A + B, and
in case that xn = 0, only B is added.

3. Attacker model

In order to model our attacker, we assume that there is a malicious agent
that can modify the signal xn, either directly or indirectly. For our purposes
in this work, we assume that the agent is able to directly modify xn, and
hence, treat x as the stream of actions of the agent. In our model, we have
assumed that a malicious behavior means that xn = 1 as often as possible.
Thus, we assume that the agent receives an instantaneous reward of +1 each
time that xn = 1. This reward scheme causes that the agent tries to increase
the mean value of the signal x and thus, θ > θ0. This is consistent with using
H1 : θ1 > θ0.

The agent tries to maximize its total cumulative reward R, defined as:

R(xn) =
∞∑
n=0

δnxn (11)

where δ ∈ (0, 1) is a discount factor that gives more weight to the rewards
obtained in closer time steps than in the future. The use of δ is very sensible
in volatile environments such as wireless networks: an attacker does not know
how long it will be able to attack and thus, it cannot be infinitely patient for
attacking.

7

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adhoc.2019.101946


© 2019. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

Also, δ allows that the total reward remains finite: note that the minimum
value for R using (11) is R = 0 for xn = 0, ∀n, and the maximum value is
R = (1− δ)−1, for xn = 1, ∀n, where we used:

b∑
k=a

δk =
δa − δb+1

1− δ
, δ ̸= 1 (12)

4. Optimal camouflage algorithms

Now, we proceed to show the optimal control that the agent should use in
order to maximize its total cumulative reward when facing an SPRT detection
mechanism. We denote by N the number of timesteps required by the SPRT
to make a decision. In practical implementations, N is usually bounded to
avoid system lockouts, although this truncation is suboptimal [22]. That is,
in a truncated SPRT, there is a maximum number of samples that the test
will gather before making a decision: N − 1. A predefined decision is fixed
beforehand in case that sample N − 1 is reached without having made a
decision and l < LLRN−1 < h. We consider that if the truncated SPRT test
reaches sample N − 1 without making a decision, H0 is rejected.

The problem that the agent must solve is the following one, where we use
(12) and consider N − 1 as the time in which the SPRT makes a decision:

max
xn

∞∑
n=0

δnxn =
N−1∑
n=0

δnxn +
δN

1− δ

s.t. xn ∈ {0, 1}, sn =
n∑

n=0

xn

LLRn < h, ∀ n ≤ N − 1

LLRN−1 ≤ l < h

(13)

Note that in (13):

• The function that the agent needs to maximize is split in two terms.
The first term refers to the timesteps in which the SPRT detection
mechanism is active, in which the agent needs to find an optimal control
law for xn such that it is not discovered. The second term includes
the timesteps after a decision is made: at these timesteps the SPRT
mechanism is not active, and hence, the agent can always use xn = 1.
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• The constrain LLRn < h allows the agent not to be discovered by the
SPRT mechanism. It forces SPRT to never reject H0.

• The constrain LLRN−1 simply indicates that, at timestep N − 1, in
which a decision is made, H0 is accepted (i.e., the attacker has not
been discovered yet).

• An assumption that we make is that l < LLR0 < h, that is, that
the LLR initial value does not allow SPRT to make a decision. This
condition is usually satisfied by normal SPRT parameters and in our
case, using (7) and (8) turns out to be:

β

1− α
<

1− θ1
1− θ0

<
1− β

α
(14)

Note that this means also that l < h in the last constrain.

In other words, the agent must be able to attack and camouflage while
the SPRT mechanism is running. When the SPRT mechanism is not running
(i.e., n ≥ N), the agent can attack without needing to camouflage. Note that
in truncated SPRT, N is fixed, while in SPRT, N is not fixed and hence, the
actions of the agent will determine the final time N , which means that N is
a value to optimize.

4.1. Optimal control for truncated SPRT

First, we proceed to obtain the optimal control for the problem (13), as-
suming that there is a truncated SPRT, which means that N − 1 is fixed.
First, note that the agent prefers using xn = 1 as often as possible because
that way, its reward is maximized. Also, note that since rewards are dis-
counted, if the agent has to choose between using x = 1 at timestep n or
at timestep m > n, the agent always prefer the former because it provides
a larger reward due to the discount factor: δn · 1 > δm · 1 for δ ∈ (0, 1).
Intuitively, this means that the agent will try to use x = 1 wherever possible.

However, the agent may not always use xn = 1 for all n. Using (10),
the agent can predict its LLRn value depending on its action. Since we
considered that θ1 > θ0, then we obtain from (7) that B < 0 and A+B ≥ 0.
This means that:

• If the agent uses xn = 0, LLRn = LLRn−1 + B < LLRn−1. In other
words, the LLRn value decreases by using xn = 0.
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Figure 2: Illustration of the constrain that LLRn < h in problem (13), where h is the
upper blue line and the black lines represent LLRn. In both plots, we show what would
happen if the agent used xn = 1. In the left plot, LLRn = LLRn−1+A+B < h and hence,
the agent could play xn = 1. However, in the right plot, LLRn = LLRn−1 + A + B > h
(solid line) and if the agent played xn = 1, H0 would be rejected and the agent would be
discovered. Instead, the agent should use Xn = 0, which would decrease the LLRn value
(dashed line).

• If the agent uses xn = 1, LLRn = LLRn−1 + B + A ≥ LLRn−1. In
other words, the LLRn value is non-decreasing by using xn = 1.

However, there are two constrains in problem (13) that may prevent the
agent from using xn = 1. The first is that LLRn < h. As we just noted, by
using xn = 1 the agent may increase its LLRn and hence, it may, eventually,
violate that constrain. In order to avoid that, the agent can play xn = 1 if
LLRn−1 + A+B < h. This is illustrated in Figure 2.

Another constrain in problem (13) that may prevent the agent from using
xn = 1 is that LLRN−1 ≤ l. We assume that l < h, which is satisfied if
α + β < 1, which is our case. Note that the agent can only decrease LLRn

by using xn = 0, thus, in order to satisfy LLRN−1 ≤ l, the agent will have to
play x = 0 sometimes. As we noted before, the agent prefers using x = 1 as
often as possible, and hence, it will delay using x = 0 to satisfy LLRN−1 < l
as many timesteps as possible. Namely, if the agent is at timestep n, he
could play xn = 1 and then, play x = 1 at timesteps [n+1, N−1] and satisfy
LLRN−1 ≤ l if LLRn−1 +A+B(N − n) ≤ l. This is illustrated in Figure 3,
and intuitively tries to delay using x = 0 as many timesteps as possible in
order to satisfy the constrain on l.

Thus, the optimal control for the agent is:{
xn = 1 if LLRn−1 + A+B < h and LLRn−1 + A+B(N − n) ≤ l
xn = 0 if otherwise

(15)
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Figure 3: Illustration of the constrain that LLRN−1 ≤ l in problem (13), where l is
the lower blue line and the black lines represent LLRn. In both plots, the solid black
lines indicate the evolution of the LLRn if the agent used xn = 1 and then x = 0 for
n ∈ [n+ 1, N − 1]. In the left plot case, the agent satisfies that LLRN−1 ≤ l, thus, it can
use xn = 1. However, in the right plot, the agent does not satisfy LLRN−1 ≤ l if xn = 1,
and hence, the agent would have to use xn = 0 to satisfy the constrain (dashed line).

4.2. Optimal control for non-truncated SPRT

In case that the SPRT is not truncated, note that the actions of the
agent determine N−1, the time in which the SPRT makes a decision. In the
previous Section, we showed that for fixed N−1, the agent would need to use
x = 0 at several timesteps. As we noted, the agent would rather use x = 1,
and this would imply that N − 1 → ∞. In other words, the agent would
cause the SPRT to never reach a decision, and its optimal control would be
(see (15)): {

xn = 1 if LLRn−1 + A+B < h
xn = 0 if otherwise

(16)

4.3. Optimal control for the attacker

Now, we proceed to obtain Lemma 1, which sums up the optimal control
obtained in the previous two Sections.

Lemma 1. Consider the following discrete time control problem, in which
the controller chooses xn and may choose N − 1:

max
xn

N−1∑
n=0

δnxn +
δN

1− δ

s.t. xn ∈ {0, 1}, sn =
n∑

n=0

xn

LLRn < h, n ≤ N − 1

LLRN−1 ≤ l < h
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Figure 4: Example of control under several situations. For all cases, θ0 = 0.5 and θ1 = 0.7.
The blue lines are the LLRn thresholds from (4), for α = β = 0.05. Green line is the case
in which there is no attack (i.e., x ∼ Bernoulli(θ0)). Brown line is the case in which there
is a simple attack (i.e., x ∼ Bernoulli(θ1)). Red line is the case in which the attacker
follows the control law from Lemma 1 when the SPRT test finishes after 100 samples.
Black line is the case in which the attacker follows the control law from Lemma 1 when
the SPRT does not have a predefined finishing time. The dashed vertical lines indicate
when each test ends. While SPRT is able to detect the simple attack, is unable to detect
the control law we describe in Lemma 1, independently on whether the SPRT test is
truncated or not.

The discount factor is δ ∈ (0, 1). The constrain has the form LLRn =
Asn +B(n+ 1) and satisfies:

• B < 0 and A+B ≥ 0

• h < LLR0 < l

In this problem, the optimal control for n ∈ [0, N−1] depends on whether
N − 1 is fixed or not:

• If N − 1 is fixed:{
xn = 1 if LLRn−1 + A+B < h and LLRn−1 + A+B(N − n) ≤ l
xn = 0 if otherwise

• If N − 1 is not fixed:{
xn = 1 if LLRn−1 + A+B < h
xn = 0 if otherwise

Let us visualize the result of the control law obtained in Lemma 1. Note
that the basic idea is that the agent is able to get close to the SPRT threshold
without surpassing it. An illustration can be found in Figure 4, in which
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we can observe how the control law proposed is able to effectively attack
the SPRT mechanism while not being detected. More complete results are
shown in Section 6, however, by now, note that the control law proposed in
Lemma 1 can successfully overcome an SPRT based defense mechanism.

5. Defense mechanism

5.1. Parallel SPRT

As we explained in the introduction, SPRT is not a good option when the
attacker may change its behavior. A solution proposed to face this problem
is given in [18], where several simultaneous SPRT tests are run in parallel,
in order to detect changes in the signal x. This would imply that, for each
new sample xn that arrives to the defense mechanism, a new SPRT test is
initiated, and n SPRT tests are updated. Note that this is a computationally
demanding mechanism, since many SPRT tests must be run in parallel.

Also, note that an approach like this would not detect an attacker fol-
lowing the control law from Lemma 1. As we show in Figure 4, the attacker
is as close as possible to the detection threshold without surpassing it. A
second SPRT test would simply be a downshift in the LLRn curve, pushing
it down and hence, making impossible that the second SPRT test detects
the attacker. This reasoning extends to subsequent SPRT tests, which are
unable to detect the attacker. Note, however, that this applies only to non-
truncated SPRT: if truncation is applied, the agent could be detected after
the last SPRT sample if the agent is unaware that there are several SPRT
tests running. Another way in which an agent could exploit such mechanism
would be simply initiating a control law for each sample n and choosing
the most restrictive one. Hence, a parallel SPRT is not only computation-
ally expensive, but also is unable to detect adequately the attacker we have
developed.

5.2. One-class SVM

We propose using another well-known tool in the field of sequence clas-
sification in order to modify the SPRT defense mechanism: a One-Class
Supporting Vector Machine (OCSVM) [19]. As described in [20], a OCSVM
is an algorithm that maps an input vector z according to whether z belongs
to a set Z or not as follows:

f(z) =

{
+1 if z ∈ Z
−1 if z ̸∈ Z

(17)

13

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adhoc.2019.101946


5.3 SPRT - OCSVM defense mechanism
© 2019. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

The algorithm takes a set of z ∈ Z points, and then obtains f by solving
the following optimization problem:

min
w,ξ,ρ

1

2
∥w∥2 + 1

νl

∑
i

ξi − ρ

s.t.(w · Φ(zi)) ≥ ρ− ξi, ξi ≥ 0

(18)

where Φ(z) is the feature map obtained by using a certain kernel, i indexes
the training inputs zi, l is the total number of training inputs, ξ are the slack
variables and ν ∈ (0, 1) is a parameter that corresponds to the fraction of
outliers in the input data set Z [23]. Thus, note that a OCSVM needs only
a training data set of valid data, in order to provide a decision function that
later can be used for anomaly detection.

5.3. SPRT - OCSVM defense mechanism

We make use of the capabilities of the OCSVM to propose a modified
SPRT defense mechanism. First, we need to define which are the features z
that we want to use. Note that these features need to characterize a statistical
signal, and a possible way of characterizing such signals is by using the power
spectrum of the signal [24]. We use as feature the power spectrum of the
LLRn signal, which is a random walk. We denote by v a subsequence of
LLRn, and in order to avoid errors caused by the mean value of the signal
we subtract the mean of v (i.e., note that the LLRn signal does not have
a constant mean). Mathematically, we propose using the following feature
vector z:

z(v) =

∣∣∣∣∣FT

(
AC

(
v −

∑M
m=1 vm
M

))∣∣∣∣∣ (19)

where FT denotes the Fourier Transform, AC is the estimator of the auco-
torrelation function, and v is a vector formed by the M most recent values of
LLRn. We use the full autocorrelation, hence, z has a length 2M−1. Hence,
z is the estimated Power Spectrum of v with the mean subtracted. As we
said, this choice of z is sensible given the fact that LLRn is a random signal,
and as we show in Section 6, the results provided by this characterization
are quite good against the attack we propose. We note that the OCSVM
training can be done offline by generating sequences of xn ∼ Bernoulli(θ0),
then obtaining the LLRn vector v by using (3) and then obtaining z by using
(19). That way, we train the OCSVM to detect any sequence not generated
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xn LLRn Build v

Obtain z(v)Obtain f(z(v))

Decision?
Reject or
Accept H0

n+ 1
YES

NO

Figure 5: Flow diagram for the proposed OCSVM-SPRT defense mechanism, where the
LLRn block implements (20).

by following a Bernoulli of parameter θ0. This means that the OCSVM will
be able to detect, not only the attacker we propose, but any with a different
spectral characterization from the signal that the OCSVM has been trained
with.

Now, we need to decide how to include the additional information that
the OCSVM provides. We propose using a modified SPRT with the following
statistic LLR′

n:

LLR′
n = LLR′

n−1 +B + Axn + γ(A+B) |min (f (z (v)) , 0)| , LLR′
0 = B

(20)
where LLR′

n−1 is the previous value of the test statistic, B + Axn is the
standard LLRn update for the SPRT as shown in (10), γ is a small positive
parameter that control how much we make use of the information given by
the OCSVM, and f is the OCSVM as defined in (17) using (19). Note that
we include an additional term which depends on A+B, the increase on the
LLRn value when xn = 1 (10). We do so because the value of A+B depends
on θ0 and θ1 (7), and thus, we achieve that the last term in (20) depends on
the concrete test parameters by being relative to the increase when xn = 1.
A flowchart illustrating the whole process can be seen in Figure 5.

Intuitively, the modified SPRT test in (20) works as follows. We first
obtain the standard LLRn value, and then, we use a OCSVM to obtain
a second opinion on whether the LLRn subsequence v has been generated
by a normal sensor or an attacker. If the OCSVM detects a sequence that
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0.02 0.04 0.06 0.08 0.1
0

0.1

γ

When θ = θ0 decides H0 When θ = θ1 decides H0

When θ = θ0 decides H1 When θ = θ1 decides H1

When θ = θ0 decides ND When θ = θ1 decides ND

Figure 6: Example on the influence of γ on the modified SPRT-OCSVM scheme proposed,
for θ0 = 0.5 and θ1 = 0.7. The details on the OCSVM are in Section 6. For the SPRT, we
consider α = β = 0.05, without truncation and finishing the test after 200 SPRT iterations.
The dotted lines represent the type I and II error of the SPRT without modification:
note that our modified test performs gives an increasing performance under H1 as γ
grows, while its performance under H0 decreases as γ grows. This is to be expected: the
OCSVM modification helps to detect a deviation from H0, however, under H0 the OCSVM
modification introduces an additional error since it increases the LLRn value.

differs from these it has been trained to detect, it returns f = −1. In that
case, the LLRn is increased by a γ(A + B) value, which is proportional to
the increase in the LLRn signal when xn = 1. If the OCSVM detects a
normal sequence, then no modification is done. Note that the effect of the
OCSVM is cumulative, and hence, our modified SPRT test detects faster an
attacker if the OCSVM continuously says so. On the other hand, note that if
the OCSVM states erroneously that a sequence comes from an attacker, the
probability of type I error is increased compared to the standard SPRT test.
This can be observed in Figure 6, in which we can observe how the error of
the modified SPRT test increases with γ under H0, but decreases under H1.
In short, what we have done is obtaining a more precise test under H1, which
however, gives a higher error under H0.
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SPRT SPRT-OCSVM
NA 97/3/0 93, 2/6.8/0
SA 3.6/96.4/0 2/98/0

OWT 100/0/0 0/100/0
ONT 0/0/100 0/100/0

Table 1: Test results for θ0 = 0.5 and γ = 0.05, for all the tests simulated. Each table
entry is the percentage of times that H0 was decided / H0 was rejected / no decision
was taken. Observe how when facing the control law from Lemma 1, SPRT is totally
unable to detect the attacker. However, the exact opposite happens with our proposed
SPRT-OCSVM mechanism: it always detects such an attacker.

6. Empirical influence of the OCSVM-SPRT parameters

We proceed to study the influence of the parameters of OCSVM-SPRT
using simulations. For all the SPRT tests, we choose α = β = 0.05; note
that these values satisfy the condition (14). We then take 10 values of θ0
equispaced in the range θ0 ∈ [0.1, 0.7], and for each θ0 value, we define
θ1 = θ0 +0.2, that is, we use as θ1 another 10 equispaced values in the range
θ1 ∈ [0.3, 0.9].

For each θ0 value, we train an OCVSVM using 500 different z vectors
generated from a Bernoulli distribution with θ = θ0, using ν = 0.1 and a
Gaussian Kernel; each z vector has a length M = 5 and hence each z has
a length of 9 samples. We then obtain the validation error using another
500 z vectors. We train 5 different OCSVM for each test and θ0 value, using
the OCSVM that provides the lower value for the sum of the training and
validation error.

For each pair of θ0 and θ1 value, we average the results for 500 runs of
each test, where all the tests are finished after 200 iterations - note that the
test might not have decided by that time. We test for four different signal
possibilities: (1) a situation of No Attack (NA), in which the signal x ∼
Bernoulli(θ0), (2) a Simple Attack (SA) situation, in which the signal x ∼
Bernoulli(θ1), (3) an attack situation in which the attacker uses the control
law from Lemma 1 withN−1 = 100 (i.e., the test is truncated, Optimal With
Truncation, OWT), and (4) an attack situation in which the attacker uses the
same control law, without truncation (Optimal No Truncation, ONT). Each
of these different situations are faced to an SPRT defense mechanism that
uses (10) and also, to our modified SPRT-OCSVM scheme, using γ = 0.05,
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NA, SPRT SA, SPRT
OWT, SPRT ONT, SPRT

NA, SPRT-OCSVM SA, SPRT-OCSVM
OWT, SPRT-OCSVM ONT, SPRT-OCSVM

Figure 7: Proportion of H0 rejections for the different schemes proposed as a function of
θ0. The dotted lines correspond to the α and 1−β values of the tests. Note that under H0

(i.e., NA), our proposed SPRT-OCSVM performs worse than SPRT, rejecting H0 more
often; and under H1, SPRT-OCSVM works better than SPRT, as we advanced in Figure
6. However, note that the improvement in detecting an attacker following the control law
from Lemma 1 is dramatic: while SPRT is never able to detect it, SPRT-OCSVM always
detects the attacker.

because, as Figure 6 shows, it provides a nice tradeoff in the error under both
H0 and H1.

The results can be observed in Table 1 and Figures 7, 8 and 9. First, in
Table 1 we show the test results for θ0 = 0.5, and we note how the control
law proposed in Lemma 1 allows that the attacker is never detected as such
under an SPRT defense mechanism. Note that the attacker is able to either
make that the SPRT test never reaches a decision if no truncation is done,
or is able to be detected always as a normal agent if the SPRT is truncated.
However, our proposed modification, SPRT-OCSVM, allows detecting such
an attacker with high accuracy. As we advanced in the previous section,
SPRT-OCSVM is able to perform better under attack by means of decreasing
the test performance under H0, i.e., when there is no attack. These results
apply to all the tested values of θ0, as can be observed in Figure 7, where the
proportion of times that each test rejects H0 is represented as a function of
θ0.
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NA, SPRT SA, SPRT
OWT, SPRT ONT, SPRT

NA, SPRT-OCSVM SA, SPRT-OCSVM
OWT, SPRT-OCSVM ONT, SPRT-OCSVM

Figure 8: Detail on the total cumulative reward R from (8) obtained for an attacker under
the different schemes proposed. For low values of δ, the use of SPRT or SPRT-OCSVM
does not bring significant differences. However, as δ → 1, note how SPRT-OCSVM causes
the attacker to obtain a lower reward than if he did not attack. While the attacker obtains
an advantage in terms of R against SPRT by using Lemma 1, this advantage vanishes when
facing our proposed SPRT-OCSVM mechanism.

In terms of the total cumulative reward in (11), we can observe in Figure
8 that an attacker using the control law from Lemma 1 is able to obtain
a better reward by following that control law if the defense mechanism is
an SPRT. However, that control law is useless against our modified SRPT-
OCSVM: note that as δ → 1 the agent receives no benefit in attacking, and
it would receive a higher reward by behaving as a normal sensor. Note that
this dependency on the value of δ comes from the fact that lower values of δ
cause that the total reward strongly depends on the rewards at the first time
steps. Since any detection method takes some time to make a decision, this
problem cannot be easily solved. However, as δ approaches 1, the attacker
puts a larger emphasis on future rewards and in this case, the ability to
camouflage becomes crucial if the attacker wants to obtain a large reward.

Finally, in Figure 9 we can observe an example of the difference that our
proposed approach has when compared to the standard SPRT. Note that
if the OCSVM detects a signal that does not follow the expected spectral
pattern, the modified LLR′

n from (20) starts growing with respect to the
SPRT LLRn. Eventually, this means that the attacker is detected. Also,
observe that the OCSVM brings a very small increase, which is controlled
by the γ parameter. As we noted before, a larger γ brings a higher detection
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Figure 9: Example of detection for θ0 = 0.5 and θ1 = 0.7. The blue lines are the LLRn

thresholds from (4). In both cases, we compare a realization of the control law from
Lemma 1 without truncation, using SPRT (black) and SPRT-OCSVM (red). The dashed
vertical line indicate when each test ends. Observe that, as in Figure 4, the SPRT is
unable to detect the attack. However, SPRT-OCSVM is able to do so: when it believes
that there is an attacker, it starts increasing slowly the LLRn value using (20). Note that
this means that eventually, the attacker is detected.

under attack, because it increases the LLR′
n faster, but that also means that

the error increases under H0.

7. Study case: Using OCSVM-SPRT in a Spectrum Sensing Data
Falsification attack

In this section, we provide an example of how OCSVM-SPRT can be
used as an additional security layer for existing defense mechanisms, using
as study case a Spectrum Sensing Data Falsification (SSDF) attack. Consider
a Wireless Sensor Network performing cooperative spectrum sensing: each
sensor senses the spectrum locally and sends this data report to a centralized
Fusion Center (FC), which uses a certain fusion rule to make a decision on
whether the communications channel is busy or idle. This problem is of
special interest in Cognitive Radio (CR) setups, in which each sensor would
be a secondary node that would cooperate among them to transmit when
there is no primary transmitting. These schemes are vulnerable to SSDF
attacks, in which false reports are given by attacking sensors. A lot of effort
has been addressed to design defense mechanisms against such attacks, as
[7], [25], [26], [27], [28], [29], [30], [31], [32], [8] or [33].

7.0.1. Problem setup

Let us assume a WSN with M sensors, which wants to estimate the
channel state in the slots k = 1, 2, ..., K. The actual state of the channel can
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be yk = 1 if the primary is transmitting or yk = 0 if the primary is idle. In
each slot k, the FC asks several sensors m for a report um,k, m ∈ 1, 2, ...,M ,
which may be um,k = 0 if sensor m senses the channel idle or um,k = 1 if
sensor m detects a primary transmitting. When there are enough reports
to make a decision, the FC uses a predefined fusion rule in order to obtain
the channel state estimation uk. Note that all the information that the FC
receives from the sensors are the binary reports. The FC makes an error if
yk ̸= uk.

Each uk,m may differ from the actual yk due to errors in the sensing
method or due to the presence of attacking sensors (ASs). We model the first
case by assuming that each sensor has a probability of obtaining a wrong
sensing result Pe, which is independent and equal for all sensors. Some
possible attacks are always yes (AY), i.e., the AS always reports um,k = 1;
always no (AN), i.e., the AS always reports um,k = 0 or always false (AF),
i.e., the AS always reports the opposite of what it has sensed. Even though
these are simple attacks, they often appear [7], [25], [8]. To these attack
strategies, we add the control law from Lemma 1, which we name Intelligent
Attack (IA).

There are several fusion rules that can be used by the FC to make a
decision. A majority rule can be used, in which a maximum sample size Nmr

is fixed: the FC collects Nmr reports and makes its decision by majority [7].
Note that the FC needs not having Nmr reports to make a decision: whenever
it has (Nmr + 1)/2 equal reports, the decision is made. Another popular
fusion rule is based on SPRT in order to have a defense mechanism against
SSDF attacks, such as SPRT and WSPRT [7], EWSPRT [25], RWSPRT
[8] or S0/1 [33]. In our problem, we use the majority rule for its simplicity
and EWSPRT (Enhanced Weighted SPRT), which makes use of a reputation
scheme to give more weight to the reports of the sensors with good reputation
and it also asks first sensors with higher reputations: this makes EWSPRT
more advanced than SPRT and WSPRT [25]. We do not use RWSPRT and
S1/0 because they require additional information from the transmissions to
make a decision.

We use our OCSVM-SPRT algorithm to enhance the defense mechanism.
For each sensor m, we run an instance of OCSVM-SPRT in order to detect
sensors that are deviating from the expected behavior of a normal sensor.
Thus, for each sensor m, we run an OCSVM-SPRT test where each xn is the
uk,m for sensor m. Note that in this case, if the transmission probability of
the primary is Ptr, the probability of receiving um,k = 1, which is used to
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Banned sensors

Report Defense Fusion

uk? ukNO
YES

Figure 10: Flow diagram for each slot k of the SSDF problem.

define the null hypothesis, is θ0 = (1 − Pe) · Ptr + Pe · (1 − Ptr). If sensor
m is detected as an attacker, the sensor is banned from the WSN and is not
called again for reports.

The whole FC procedure can be seen in Figure 10. In each slot k, the FC
asks for a report to a sensor m. This sensor m is randomly selected among
the sensors not banned if the majority rule is used, and under EWSPRT
sensors are sorted by their reputations. Then, a defense mechanism is used
to update the list of banned sensors, and if sensor m has not been banned,
its report is used to update the fusion rule. If more information is needed to
make a decision, then the process starts over; otherwise, the decision uk is
returned.

7.0.2. Results

We run the SSDF attack described in the previous section for a WSN with
M = 10 sensors with Ptr = 0.5. We test for three possible defense mechanism:
no defense mechanism, an SPRT and an OCSVM-SPRT mechanism. The
two latter cases use the SPRT described in Section 2, with θ0 = (1 − Pe) ·
Ptr + Pe · (1 − Ptr), θ1 = θ0 + 0.1 and α = β = 0.05. We use the same
OCSVM that defined in Section 6 with γ = 0.05. Regarding the fusion rule
parameters, we set Nmr = 20 for the majority rule, and for EWSPRT we
use α = β = 0.05 to define the sequential test thresholds. EWSPRT defines
a maximum number of reports for system stability: after 20 reports, if no
decision has been achieved, EWSPRT returns uk = 1, which is a conservative
decision that favors the primary [25].

We define a grid on the number of attackers and the sensing error com-
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(a) FC average error for the Always No (AN) attack. From left to right:
Pe = {0.1, 0.2, 0.3}. Lower is better.
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(b) FC average error for the Always False (AF) attack. From left to right:
Pe = {0.1, 0.2, 0.3}. Lower is better.

No defense + Majority rule No defense + EWSPRT
SPRT + Majority rule SPRT + EWSPRT

OCSVM-SPRT + Majority rule OCSVM-SPRT + EWSPRT

Figure 11: Results for the AN and AF attacks. Note that all attack strategies are suc-
cessful, since the error increases with the number of ASs. In these two attacks, the choice
of the defense mechanism does not make a significant different, but the fusion rule does:
majority rule, in general, provides a lower error than EWSPRT.

bining {0, 1, 2, 3, 4, 5} ASs and Pe = {0.1, 0.2, 0.3}. As attack strategies, we
use AY, AN, AF and IA, and as defense mechanism, we use no defense mech-
anism, SPRT and OCSV-SPRT. For each combination of these parameters,
the results are averaged over 50 realizations of each test, with K = 50. The
results can be observed in Figures 11 and 12. All attacks are successful and
increase their harm with the number of ASs: this is specially remarkable for
the IA case, since the control law that the ASs follow was not derived to fool
the fusion rules used. Note that using our proposed OCSVM-SPRT defense
mechanism does not cause any negative impact in the decision error, except
for AN attack with Pe = 0.1, and it does help against the IA, in which it
provides the best results and helps to decrease the error for all the fusion
rules tested.
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(a) FC average error for the Always Yes (AY) attack. From left to right:
Pe = {0.1, 0.2, 0.3}. Lower is better.
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(b) FC average error for the Intelligent Attack (IA). From left to right:
Pe = {0.1, 0.2, 0.3}. Lower is better.
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Figure 12: Results for the IA and AY attacks. Note that, again, all attack strategies are
successful, since the error increases with the number of ASs. In these two attacks, the
choice of the defense mechanism makes a difference: in the AY attack, when there are
several ASs, having a defense mechanism decreases the error. In case of IA, note that as
Pe increases, OCSVM yields a lower error. Again, note that the majority rule consistently
provides a lower error than EWSPRT.

It may be surprising that EWSPRT, in general, provides a higher error
than the simpler majority rule. This is due to the cases in which EWSPRT
did not have enough information to make a decision after 20 reports and
the test was truncated. This is consistent with [33], which shows that the
number of samples required by EWSPRT significantly increases with the
number of ASs. Even though EWSPRT was not able to make a decision
within 20 reports in some cases, in average EWSPRT always required fewer
reports to make a decision that the majority rule. In some cases, also, the
OCSVM-SPRT defense mechanism reduced the average number of reports
required to make a decision using both fusion rules. Hence, OCSVM-SPRT
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can be used as an additional security layer by keeping track of the behavior
of each sensor, and banning those who deviate from the expected behavior:
we compromise computational power for an additional security.

8. Conclusions

In this work, we show that there are several detection problems in WSN
which are based on SPRT tools which are vulnerable to intelligent attackers,
because SPRT assumes distributions that do not change with time. In the
first part of our work, we show one attacker that takes advantage of this fact
to develop an optimal control law that renders it undetectable for a Bernoulli
SPRT.

Then, in a second part, we have proposed OCSVM-SPRT, a modified
SPRT that allows detecting such intelligent attackers. The idea is that an
OCSVM is trained with data generated according to the distribution of nor-
mal sensors, and it then is able to detect behaviors that do not match normal
sensors. We propose using spectral features of the LLRn signal, which proves
to be very effective against the attack we had previously developed in our
simulations.

The approach we propose has several limitations. It requires a train-
ing stage, it requires evaluating an OCSVM in each time step and it gives
worse results than standard SPRT under H0. But it also provides significant
advantages: the very definition of OCSVM means that our proposed SPRT-
OCSVM test is able to detect, not only our attacker, but potentially any
attacker whose spectral pattern differs from normal sensors. It also requires
a minimal modification to the standard SPRT, and the tradeoff between de-
tecting an attacker and worsening the results under H0 can be controlled
with a γ parameter.

We conclude that SPRT is vulnerable to an intelligent attacker. The
control law we propose in Lemma 1 is simple to implement and hence, is a
real threat to current SPRT based defense mechanisms. We also note that
the attackers have a wide set of possible attack strategies today [16], hence,
the study on defense mechanisms able to counter these attackers is vital for
the security of sensor networks.
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