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ABSTRACT

In this work, we develop an algorithm based on graph networks to
train distributedly a deep learning model. We consider that there are
several nodes, in an arbitrary network topology, each one of them
having access to a local dataset that, for privacy concerns, cannot be
shared with other nodes. We also assume that there are bandwidth
constraints, and hence, it may not be affordable sharing the weights
of the model with other nodes. Our algorithm makes use of pruning
and an autoencoder to train under all these constraints, and our sim-
ulations show that it provides a good accuracy, while preserving the
privacy of the data and providing a compression of nearly two orders
of magnitude in the transmitted bits.

Index Terms— Deep Learning, Distributed Systems, Autoen-
coder, Graph Networks

1. INTRODUCTION

Privacy is becoming a very important topic in our world today, and a
lot of research is devoted to this area, as a recent survey shows [1]. In
this work, we are interested in training a Deep Learning (DL) model,
in which the data is distributed among different agents communi-
cated among them. If the local dataset of all agents are identically
distributed, they are balanced, and unbalanced otherwise. We should
not share the training dataset among the agents for privacy reasons
[2]. Although there are techniques to preserve privacy while doing
a centralized training [3], it is more frequent to work distributedly
when privacy matters [4], [5].

As shown in [6], a lot of research has been dedicated to obtaining
algorithms for training DL models in a parallel / distributed fashion
[6]. However, we are interested in developing an algorithm that si-
multaneously (1) deals with unbalanced local datasets, (2) adapts to
bandwidth restrictions (3) preserves the privacy of the local datasets
and (4) is fully distributed. Most current algorithms satisfy only
some of these four assumptions: Stochastic Gradient Descent ap-
proaches, both synchronous and asynchronous, are communication
intensive: in each iteration, they need to transmit a gradient vector
which, in case of a DL model, may have millions of components
[7], [8], [9]. As an alternative to synchronous and asynchronous
SGD methods, models based on diffusion mechanisms are being
proposed as a way to overcome the limits imposed by the communi-
cation links, as Gossiping SGD [7], which however, does not scale
well, or GossipGradD [10], which requires balanced datasets.
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tion under the grant TEC2016-76038-C3-1-R (HERAKLES). We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the
Titan V GPU used for this research.

Moreover, as shown in [6], most algorithms for training DL
models in a parallel / distributed fashion preserve a copy of the model
weights which are visible to all agents. This assumption needs not
hold in distributed settings, as different nodes with different datasets
will have different weights in their local DL models. It is possible
either to train locally several DL models and provide as output an
average of these models [11] or combining model weights during
training [12], which is the approach that we choose to use.

However, as we noted, exchanging the model weights or the gra-
dient of these weights may be unfeasible if bandwidth is limited, as
in mobile systems, where DL models are becoming subjects of in-
terest [13]. Hence, compressing a DL model has been also the focus
of recent research. It is possible to compress a DL model by tak-
ing advantage of the redundancies of the weights [14]. A different
way consists in using pruning: current DL models are oversized and
hence, there are small subsets of weights which are enough to pro-
vide a good accuracy in DL models [15]. This is used in [5], where
only the weights with larger gradient norm are transmitted. In [16]
and [15], the weights that are transmitted are those with larger norm.
We make use of pruning also for our algorithm.

Finally, we model the communication network using the Graph
Network model [17], which generalizes many prior works which
used graphs and neural networks in order to deal with data while
preserving the relations among the data. One of the firsts works is
[18], where Graph Neural Networks are proposed and its conver-
gence properties are discussed. Many other works followed, such as
[19], [20] or [21], to mention some. It is an expanding field, whose
applications range from image and text processing, to molecular ap-
plications in biology, social network interactions or multi-agent sys-
tems [22], [23]. We choose to use the Graph Network model [17]
because it generalizes many of these previous graph based structures
and provides a convenient framework to analyze our problem.

The rest of the paper goes as follows: Section 2 introduces the
mathematical concepts that are needed to understand our problem,
which is presented in Section 3. Our proposed algorithm is presented
in Section 4, and then we validate our approach in Section 5. We
finally draw some conclusions in Section 6.

2. BACKGROUND

2.1. Graph Networks

Graph Networks (GNs) [17] are a general artificial intelligence
framework that makes use of graphs in order to learn the different
relations among the available data in a structured way. Let us define
a graph triple G = (u, V,E), where u is a vector representing the
global state of the graph, V = {vm}m=1:Nv is the set of nodes
of the graph, where we have Nv nodes and each vm is a vector
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Fig. 1. GN structure, where we see how each of the elements of the
input graph G = (u, V,E) is processed using the functions ϕu, ϕv ,
ϕe, ρek , ρe and ρv to obtain the output graph G′ = (u′, V ′, E′).

containing the attributes of node m, and E = {ek, rk, sk}k=1:Ne

is the set of edges of the graph, where ek is a vector containing the
attributes of the edge k, sk is the index of the sender node and rk is
the index of the receiver node.

The GN model defines the GN block as a graph to graph map-
ping: a graph G is provided as input and the graph G′ is returned as
output using the following equations:

e′k = ϕe (ek, vrk , vsk , u) ,

v′m = ϕv (ρek (e′k) , vm, u
)
,

u′ = ϕu (ρv (v′m) , ρe (e′k) , u) , (1)

where ϕe, ϕv and ϕu are functions that allow updating the edges,
nodes and global state, respectively, as illustrated in Figure 1. These
functions are the same for all nodes and edges of the graph, and
may be implemented using neural networks. The ρ functions are
called diffusion functions: they aggregate data from several nodes
or edges to generate a combined output: these functions need to be
independent to the number of inputs and their ordering, hence, it is
frequent using the sum function, the maximum, the minimum or, as
we do, randomly choosing one input and transmit it.

In the output graph G′, the attributes of each edge e′k are ob-
tained by updating the input graph edges using information about
the global state, as well as the pair of nodes that are connected by
each edge. The attributes of each node in the output graph, v′m, are
obtained using the attributes of the node and the global state from
the input graph, vm and u, and the aggregated information from the
edges that have node m as receiver. Finally, the output global state is
obtained with the function ϕu, which takes as inputs all the attributes
of the nodes and edges from the output graph, as well as the input
global state.

2.2. Deep learning for image classification

DL has been particularly successful for image processing tasks, such
as classification or labeling [24]. One of the keys for this success has
been the use of Convolutional Neural Networks (CNNs). CNNs are
designed to extract information from local environments, and hence,
they take advantage of the strong spatial correlation in images [25].
They have become the standard tool for image analysis today.

2.3. Autoencoders

Autoencoders are a special type of neural network, which is trained
so that the output is the same vector as the input [25]. It usually
has two parts: the encoder and the decoder. The encoder takes the
input vector and produces as output a latent vector, which is usually

smaller than the input vector. The decoder takes as input the latent
vector and produces as output a vector which tries to match the input.
Hence, the main idea behind autoencoders is being able to extract
meaningful features that allow compressing the input data to a latent
vector representation with a smaller dimension.

3. PROBLEM DESCRIPTION

We consider a problem in which we have M agents, each one of
them with a private local dataset Dm, m ∈ 1, 2, ...,M , where
the set Dm of each agent has Nm tuples of data x and labels y.
Thus, Dm = {(x1,m, y1,m), (x2,m, y2,m), ..., (xNm,m, yNm,m)}.
We define D = ∪mDm as the total dataset. The target of each
agent is to train a DL model, with weights θm, such that it is able
to approximate the function fθm(xi,m) = yi,m by minimizing a
certain loss function l(yi,m, fθ(xi,m)), ∀(xi,m, yi,m) ∈ D. Note
that we want to minimize the loss function with respect to the total
dataset D, however, each agent m has only access to a certain subset
Dm of D. Also, note that we assume that all agents have the same
function f , i.e., that they share the same DL model. Each agent can
communicate with the agents in its neighborhood, and the network
has an arbitrary topology. As we want to preserve the privacy of
each agent, agent m cannot share its dataset Dm. Thus, each agent
can only transmit hm, a vector of information to other agents such
that it gives them useful information about its own dataset. At the
same time, hm has to be bounded, as we consider that we have a
limited transmission bandwidth among agents.

4. PROPOSED ALGORITHM

We now describe Graph AutoEncoder (GAE), the solution that we
propose for the problem described in Section 3.

4.1. Graph formulation of the problem

We make use of the GN formulation in order to define our problem.
We use the graph G = (u, V,E) to model the network formed by
the agents, where each agent is a node of the graph, hence, M = Nv .
We consider that the attributes of node m are the concatenation of
hm and its local losses lm = l (yi,m, fθm(xi,m)) ,∀(xi,m, yi,m) ∈
Dm. Hence, vm = [hm, lm], where [ ] represents the concatena-
tion operator. The edges of the graph represent the communication
capabilities of each agent, that is, the edge ek, rk, sk means that the
agent sk can communicate with agent rk. We consider that each
edge represents a unidirectional communication link. The attribute
of each edge is its bandwidth. The global state u represents the av-
erage of the loss function values, u = 1

M

∑
m lm. We consider that

the diffusion functions ρ consists in randomly selecting one agent of
the neighborhood and exchanging information with it. We only need
to define each the functions ϕe, ϕv and ϕu.

4.2. Definition of ϕv

The key part in our model is the function ϕv , by which each node
m updates its attributes vm = [hm, lm]. As each node m has only
access to Dm, node m needs to send useful information hm about its
model fθm to the nodes in its neighborhood, and receive information
from the other nodes. A possible solution proposed in the literature
to the problem we are addressing is simply to transmit the model
weights, that is, hm = θm [12]. If node m receives the weights
from node j, then node m updates its weights as:

θm = (1− α)θm + αθj , (2)
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Fig. 2. Autoencoder structure for dimensionality reduction. The en-
coder obtains the w values with largest positive magnitude, the w
weights with largest negative magnitude, encodes the rest of weights
using the encoder part of the autoencoder and transmits this informa-
tion, as well as the pruning threshold. All that information is used
by the decoder in order to reconstruct the weights.

where α ∈ [0, 1] is a parameter that controls the update of the
weights. As diffusion function ρek for node m, as said before, we
randomly choose one of the potentially many edges that point to-
wards node m, and takes its h vector in order to update the weights
θm. Thus, under this paradigm, the function ϕv becomes:

ϕv = [hm, lm] . (3)

Note that we assume that there is no error in the communication
of the weights on the network, although we do not enter into details
of the communication mechanism.

4.3. Proposed ϕv using autoencoders and pruning

Current DL models can have millions of parameters [24], thus, the
amount of data to transmit may be too large for limited bandwidth
links. Note that the bits required to transmit θm is bθ:

bθ = Nθbfloat, (4)

where Nθ is the number of weights and bfloat the bits used to en-
code a float number. A possible way to reduce the bits to transmit
is to combine pruning with quantization and Huffman coding, as in
[16], but this method is computationally intensive, as the quantiza-
tion centroids have to be calculated for each transmission.

We propose reducing the bits to transmit by using pruning and an
autoendoder structure, as shown in Figure 2. When node m wants to
obtain hm, it starts by obtaining its weights θm and pruning them to
obtain the pruned version of the weights, θm,p. The pruning is done
by selecting the Np weights with larger norm 2 and setting the rest of
weights to zero [26]. The resulting vector of weights is sparse, and
thus, we need transmitting only the non-zero values as float numbers
and their indexes as integers. Pruning transmits bθ,pr bits:

bθ,pr = Np (bint + bfloat) , (5)

where bint is the number of bits used to encode an integer number.
In order to further reduce the dimension of hm, we also use an

autoencoder structure. The sender node has the encoder part of the
autoencoder: it provides as input θm,p and encodes the weights as
follows. We transmit the 2w largest norm 2 weights of θm,p, as these
are the most important, and use the autoencoder to encode the rest

of weights. We also transmit the pruning threshold, so that the de-
coder can set to 0 all values below that threshold in order to account
for error in the autoencoder reconstruction. Thus, the encoder sends
hm, composed of 2w weights, the latent vector of the autoencoder
and the indexes of the weights θm,p. The receiver node needs to
have the decoder part of the autoencoder, in order to obtain θ̂m,p,
the reconstruction of θm,p, from the information in hm. The re-
constructed weights are combined using (2). Note that in this case,
we need to transmit the Np indexes as integers, but now, instead of
transmitting Np weights, we transmit only Nl +2w weights and the
pruning threshold, where Nl < Np is the latent dimension of the
autoencoder. Thus, the number of bits transmitted now are:

bθ,pr,ae = Npbint + (2w +Nl + 1) bfloat, (6)

where we note that this method requires that all nodes have the same
encoder and decoder models, which are trained a priori and dis-
tributed to all nodes of the network.

4.4. Definition of ϕe and ϕu

In our problem, the edges are static, that is, we do not change the
edges attribute, which is its bandwidth bk. We use the edges to send
the node losses and the node information vector h. Thus:

ϕe (ek, vsk ) = [bk, vsk ] = [bk, hsk , lsk ] . (7)

Note that the bandwidth in the edges limits the maximum num-
ber of bits that they can transmit. This is a limitation that needs to
be taken into account when designing the compression mechanism,
that is, the parameters Np and Nl (6).

Finally, the global state is the mean of the losses of each agent,
and hence, by denoting l′m to the current losses of node m:

ϕu

(∑
m

v′m

)
=

1

M

∑
m

l′m. (8)

4.5. GAE algorithm overview

Algorithm 1 Overview of GAE.
Input: The network connections V , the list of m nodes with their

Dm, T , f , autoencoder networks, α and Np.
1: Initialize E, setting hm and lm to zero; and u = +∞.
2: Obtain G = (u, V,E), the graph of the network.
3: for t ∈ 1, 2, ..., T do
4: Each node m trains its local model fθm by using its local

database Dm, obtaining lm.
5: Each node m obtains hm.
6: Update e′k using (7), v′k using (3) and u′ using (8).

Output: M models fθm trained distributedly on D.

The whole GAE procedure can be seen in Algorithm 1, which
integrates all the parts described in the previous sections. First, we
have to set α and Np, as well as provide the autoencoder model to
each node. Then, for a certain number of iterations T , for each node
m, GAE alternatively trains fθm on the local dataset Dm, and then
communicates to other nodes and updates the parameters θm. Note
that this process needs not be synchronous, as each node may train
and diffuse its information in different times. The update process of
ϕv has been already explained in Section 4.3.
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(c) Decoder.

Fig. 3. DL models used in our experiments. Conv(a, b, c) stands for
a convolutional layer with a neurons, b kernel and c as activation
function, and Dense(a, c) is similar for a dense layer. We use Rec-
tified Linear Units activations (ReLU) in all layers except the final
one of the local model, where a softmax activation function is used
in order to give a probability, and the final layer of the decoder, as
the output data may take any value in (−∞,+∞).

5. RESULTS

Now, we show the results for different setups in which we test and
validate GAE. We focus on studying the effects of our proposed ar-
chitectures on the accuracy and the bits needed for transmission. We
consider a ring topology network, in which there are M = {1, 4, 16}
nodes, where M = 1 is the centralized case, i.e., a single node has
access to D.

We test GAE using the MNIST digits database, which is a well-
known benchmark [27]. It has 60000 28 × 28 training grayscale
images with handwritten digits between 0 and 9, with other 10000
images for validation. Each image comes labeled with the digit in the
image. We split the training set in M parts to form the Dm sets, and
validate each local model using the 10000 validation images. We
propose two different settings: one in which Dm contains images
from all digits, i.e., balanced datasets, and another in which each Dm

contains samples from 8 randomly assigned digits, i.e., unbalanced
datasets. The local DL model used to classify the MNIST digits can
be seen in Figure 3. We train using Adam [28].

The architecture that we use for the autoencoder can be seen
in Figure 3. In our case, we trained our autoencoder using 5000 /
500 weights for training/validation, where the weights were obtained
from training the local model using the centralized scheme. The
performance of the autoencoder increases significantly if the input
data is sorted, as this adds correlation; note that, since we have to
transmit the data indexes, this does not increase the amount of data
to transmit. After 25 training epochs using Adam and minimum
square error as loss function, the autoencoder converged. The same
autoencoder has been used for all our experiments.

Finally, as parameters for our autoencoder architecture, we use
α = 0.5, Np = 50000, w = 250 and Nl = 50. As the local DL
model has Nθ = 613514 parameters, we are pruning by a factor

0 50 100 150 200 250 300

0.15

0.10

0.05

Epoch

1
-a

cc
ur

ac
y

Fig. 4. Results obtained: red is the centralized case, blue is for
4 nodes and balanced datasets, orange is for 4 nodes unbalanced,
green is for 16 nodes balanced, and black is for 16 nodes unbal-
anced. Baselines are dotted, and our proposed algorithm, GAE, in
solid lines, produces similar accuracies to the baselines.

Centralized 4 nodes 16 nodes
GAE balanced 0.9861 0.9747

Baseline balanced 0.9904 0.9893 0.9780
GAE unbalanced 0.9260 0.9320

Baseline unbalanced 0.9562 0.9661

Table 1. Accuracy obtained in validation.

of roughly 10%. We train the local models for T = 300 epochs,
following the GAE description from Algorithm 1 and using the cat-
egorical crossentropy as loss function. We initialize all fθm with the
same weights, as pruning significantly improves using this [15]. As
baseline, we compare with the case in which we transmit the pruned
weights. The results obtained can be observed in Figure 4 and Table
1. We note that the highest accuracy occurs in the centralized case,
and it decreases with the number of nodes. Also, note that the ac-
curacy in the unbalanced case is lower than in the balanced case, as
expected. Significantly, note that GAE produces a low decrease in
accuracy.

Considering that bfloat = 32 and bint = 20, as we need 20
bits to transmit the positions of the 613514 weights, we can com-
pare the bits required for each case. Without compression, we have
bθ = 19.63 · 106 (4). With pruning, we have bθ,pr = 2.6 · 106 (5).
Using GAE we have bθ,pr,ae = 1.02 · 106 (6). Note how using an
autoencoder as we propose helps both significantly compressing the
weights in nearly two orders of magnitude compared to not using
pruning, and in more than half to using pruning, while preserving
a good accuracy that is always above 90% and similar to the prun-
ing baseline in all situations, as the accuracy decrease is around 3%
in the worst case. Hence, GAE is successful: it reduces the data
transmitted while preserving a good accuracy.

6. CONCLUSIONS

GAE is a promising algorithm that may be extended in several direc-
tions, such as providing convergence analysis or checking its prop-
erties for a wider set of parameters. This is a first step towards dis-
tributed algorithms to train DL models that preserve the privacy and
operate under limited bandwidth, which may have many applications
in the current world.
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