
sensors

Article

Deep Reinforcement Learning for Attacking Wireless
Sensor Networks

Juan Parras 1,* , Maximilian Hüttenrauch 2,3, Santiago Zazo 1 and Gerhard Neumann 2,3

����������
�������

Citation: Parras, J.; Hüttenrauch, M.;

Zazo, S.; Neumann, G. Deep

Reinforcement Learning for Attacking

Wireless Sensor Networks. Sensors

2021, 21, 4060. https://doi.org/

10.3390/s21124060

Academic Editor: Seokhoon Yoon

Received: 29 April 2021

Accepted: 10 June 2021

Published: 12 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Information Processing and Telecommunications Center, Universidad Politécnica de Madrid,
28040 Madrid, Spain; santiago.zazo@upm.es

2 Lincoln School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK;
maximilian.huettenrauch@kit.edu (M.H.); gerhard.neumann@kit.edu (G.N.)

3 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
* Correspondence: j.parras@upm.es

Abstract: Recent advances in Deep Reinforcement Learning allow solving increasingly complex
problems. In this work, we show how current defense mechanisms in Wireless Sensor Networks
are vulnerable to attacks that use these advances. We use a Deep Reinforcement Learning attacker
architecture that allows having one or more attacking agents that can learn to attack using only
partial observations. Then, we subject our architecture to a test-bench consisting of two defense
mechanisms against a distributed spectrum sensing attack and a backoff attack. Our simulations
show that our attacker learns to exploit these systems without having a priori information about
the defense mechanism used nor its concrete parameters. Since our attacker requires minimal hyper-
parameter tuning, scales with the number of attackers, and learns only by interacting with the defense
mechanism, it poses a significant threat to current defense procedures.

Keywords: POMDP; Deep Reinforcement Learning; TRPO; SSDF attack; backoff attack

1. Introduction

Reinforcement learning (RL) is a field that has attracted great attention in the last
twenty years in the community of artificial intelligence. It allows programming agents to
learn by interacting with a complex, dynamic environment: the agent observes its state,
chooses actions, obtains a reward and transitions to another state. It is important to remark
that RL does not require indicating how the agent is to act; instead, the agent learns to
choose its action by trial and error, such that its total reward is maximized. Introductory
material for RL can be found in [1,2].

The recent advances in the field of Deep Learning [3] have produced a massive step
forward in the RL field. A seminal work was the publication of the Deep Q-Networks
(DQN) algorithm [4,5], which offered superhuman performance in a set of Atari games.
Several other algorithms for Deep RL (DRL) followed and were applied successfully to
complex problems [6–10].

These advances do affect many problems of interest in the area of Wireless Sensor
Networks (WSNs). A survey notes that RL algorithms are used in several problems that
arise in WSNs, such as routing, data latency, path determination, duty cycle management,
QoS provisioning or resource management [11]. Another problem is the security in WSNs,
where a great deal of research is being done at the moment [12–16], also taking advantage
of these recent advances in deep learning [17,18]. The idea of applying RL to cyber security
is not new [19,20]; to mention some examples, DRL tools are used in WSN security to detect
spoofing attacks [21], for mobile off-loading [22,23], to avoid jamming [24,25] and to model
DoS attacks [26] or data poisoning attacks [27].

However, many current defense mechanisms designed for WSNs are ad hoc, that
is, designed against a specific attack [28–30]. However, the advances in DRL potentially

Sensors 2021, 21, 4060. https://doi.org/10.3390/s21124060 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7028-3179
https://orcid.org/0000-0001-9073-7927
https://doi.org/10.3390/s21124060
https://doi.org/10.3390/s21124060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124060
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124060?type=check_update&version=2

Sensors 2021, 21, 4060 2 of 20

open the door to designing an attacker that learns to exploit a possibly unknown defense
mechanism, as these methods follow a trial-and-error approach to learn an optimal behavior.
Inspired by these advances, we apply DRL techniques for learning an optimal attack against
WSN defense mechanisms that are unknown to the attacker. Thus, the question we pose is,
given a WSN in which there are several Good Sensors (GSs) and one or more Attacking
Sensors (ASs), how do current defense mechanisms perform against DRL-based attackers?
Can we learn an attacker using DRL that exploits unknown defense mechanisms simply by
interacting with them?

A previous work [31] showed that DRL techniques could be used to obtain quasi-
optimal attacks in a Cooperative Spectrum Sensing network using a robust defense mecha-
nism. This paper expands that work significantly, as we are interested in the multiple ASs
case. Moreover, we study whether the ASs pose a larger threat to the defense mechanism
if the ASs are able to communicate and cooperate on the task of attacking the defense
mechanism. Compared to [31], our approach has several important differences. First,
we do not assume that the state is observable for the ASs: they will only have partial
information about the system, which is a far more realistic setting. This means that the ASs
do not have access to the precise state of the defense mechanism (e.g., the reputation of
each node), as they only have access to values that can be observed, such as the times
when a node attempts to transmit. Second, we study two different defense mechanisms on
the PHY and MAC layers: in the former, the action space is continuous, while in the latter,
the action space is discrete. Our Deep Learning Attacker (DLA) is able to work with both
types of action spaces, thus giving it more flexibility. Third, we focus on the case in which
there are more than one AS, enabling the ASs to communicate their observations to other
ASs in order to better exploit the defense mechanism. Since all the ASs have a common
goal, which is to exploit the defense mechanism of the WSN, the ASs can be studied as
a swarm [32], which is a group of homogeneous agents that cooperate to obtain a com-
mon goal in a decentralized fashion. While there is a large body of research devoted to
the optimization of swarms from the evolutionary perspective, including [33–36], we use
gradient-based optimization methods as in [37].

Our results show that our DLA architecture does pose a strong challenge to WSN
security that current ad-hoc defense mechanisms fail to deal with. The threat that DRL
methods pose to current defense mechanisms when ASs can communicate among them is
surprisingly not well assessed in the current literature to the best of our knowledge.

This paper is structured as follows. We start by describing the mathematical founda-
tions that our work is based on in Section 2. Section 3 introduces the defense mechanisms
for the two attacks we study. Afterwards, Sections 4 and 5 introduce our DLA architecture
and validate our approach via simulations, in which we test the effectiveness of our DLA.
Finally, in Section 6, we discuss the results and draw some conclusions.

2. Background

We now introduce several key concepts to understand our model. We start by in-
troducing Markov Decision Processes (MDPs), Partially Observable MDPs (POMDPs)
and a swarm model. We also explain a DRL algorithm, Trust Region Policy Optimiza-
tion (TRPO).

2.1. Deep Reinforcement Learning

Let us start by considering that there is a single AS. MDPs are a common framework
to study optimal control problems and can be defined as [38]:

Definition 1. An MDP is a 5-tuple 〈S, A, P, R, γ〉, where:

• S is a finite set of states s.
• A is a finite set of actions a.
• Pa(sn, sn+1) is the probability that action a in state sn and time step n will lead to state sn+1

in time step n + 1.

Sensors 2021, 21, 4060 3 of 20

• Ra(sn, sn+1) is the reward received after transitioning from state sn to state sn+1 due to
action a.

• γ is a discount factor.

An MDP policy π is a mapping π : S→ A that associates an action (or a probability
distribution over actions) to each state. We can define π as a function of the current state
because the Markov property holds: the probability to reach state s in time n depends only
on the state in time n− 1.

There are several ways of solving an MDP. One approach is using Dynamic Program-
ming methods [39], which require knowing Pa. Another approach is RL, which obtains
an optimal policy without explicitly knowing the transition function Pa. There are several
RL algorithms that could be used, such as Q-learning or SARSA [1]. However, these RL
algorithms are impractical when the state and/or the action space are large or continuous.
For these cases, there has been recently a lot of research that uses the advances in Deep
Neural Networks (DNNs) to propose DRL algorithms, which are able to cope with contin-
uous, large state spaces, such as DQN [4,5] or DRQN [6], and even with continuous action
spaces, such as TRPO [9] or PPO [10].

We use TRPO [9] as a DRL algorithm in this work. TRPO uses a DNN of param-
eters θ to approximate the policy πθ . The policy is updated by solving the following
optimization problem:

maximize
θ

E
[

πθ

πold
A(sn, a)

]
subject to E[DKL(πθ ||πold)] ≤ δ,

(1)

where E is used to denote the mathematical expectation, πold refers to the policy in the pre-
vious iteration, A(sn, a) is the advantage function, which gives an estimate of how good
in terms of reward it is to use action a in state sn. DKL denotes the Kullback–Leibler diver-
gence, and δ is a constant that forces the new policy to be closer than δ to the old policy.

The rationale for using TRPO is twofold. Firstly, it allows working with continuous
and discrete action spaces [9], which provides flexibility to our DLA. Furthermore, TRPO
is a powerful DRL algorithm, which has shown to benchmark very well in different sets of
tasks [40].

2.2. Partially Observable Markov Decision Processes

In our case, the real state of the network is typically unknown and the agents can only
obtain local observations such as their last actions and rewards. Thus, we need to introduce
the concept of POMDP, which generalizes the MDP framework. A POMDP is defined as
follows [38]:

Definition 2. A POMDP is a 7-tuple
〈S, A, P, R, γ, Ω, O〉, where:

• S, A, Pa(sn, sn+1), Ra(sn, sn+1) and γ are defined as in the MDP case.
• Ω is a finite set of observations o.
• Oa(on, sn) is the probability of observing on given that the actual state is sn and the agent

takes action a.

In an MDP, the observation corresponds to the state. For POMDPs, the state is not
directly observable and hence the Markovian assumption does not hold: choosing an
optimal action in time n in general requires knowing the whole history of past observations
on for n ∈ {0, 1, ..., n}; thus POMDPs are computationally complex to solve. If N and
the sets S, A and O are finite, there exist algorithms that can obtain the optimal policy [38].
Another way of solving POMDPs consists in obtaining a belief, which is a sufficient
statistic that collects all the pertinent past information and allows turning the POMDP

Sensors 2021, 21, 4060 4 of 20

in an MDP over the belief space [38]. An alternative way of solving POMDPs is based
on Predictive State Representation (PSR) [41,42]. Finally, there are methods that use DRL
tools to obtain approximate solutions for POMDPs, which can be classified in two main
branches according to [6]:

1. Using Recurrent Neural Networks (RNNs), which are able to store past information.
This solution is proposed to learn POMDPs in [6].

2. Using a finite vector of past observations as input to the policy DNN. As [6] shows,
this solution is an approximation for solving POMDPs, but it can provide very good
results [5] while keeping a lower computational complexity. This motivates us to use
this approach in this paper.

2.3. The Swarm Model

In this paper, we want to model more than one AS and study a potential performance
increase if the ASs are able to communicate. If we have more than one AS, it is important
to note that all ASs will share a common goal, which in this case is to exploit the defense
mechanism of the network. Our case shares a lot of similarities with the swarm robotics
literature [37]. A swarm is a group of homogeneous agents that cooperate to obtain a com-
mon goal in a decentralized fashion. In our case, the ASs need to cooperatively attack
the defense mechanism. There is extensive ongoing research that tries to optimize the be-
havior of a swarm from an evolutionary perspective, taking inspiration from nature [36].
Some examples of these algorithms are Krill Herd algorithm [33,43], Cuckoo Search [44,45],
Monarch Butterfly Optimization [35,46] or Elephant Herding Optimization [34,47]. Instead
of using these models, we use a gradient-based approach as in [37] to train our policy DNN.

There are several ways of modeling a swarm from a dynamic systems perspective.
A frequent model is the Dec-POMDP framework [48,49], Ch. 15, which, unfortunately,
has a NEXP-Complete complexity in the worst case [50]. This problem affects even recent
algorithms such as [51], which can be applied only in very limited time horizons. In order
to alleviate the complexity that arises under the Dec-POMDP model, a particularization of
this framework for swarms was proposed in [32], called the swarMDP:

Definition 3. A swarMDP is defined in two steps. First, we define A = 〈S, A, Ω, π〉, where
the agent prototype A is an instance of each agent of the swarm:

• S is the set of local states.
• A is the set of local actions.
• Ω is the set of local observations.
• π is the local policy.

A swarMDP is a 7-tuple 〈I,A, P, R, O, γ〉 where:

• I is the index set of the agents, where i = 1, 2, ..., N indexes the agent.
• A is the agent prototype defined before.
• Pa(sn, sn+1) is the transition probability function defined as in the POMDP. P depends on a,

the joint action vector and s is the global state.
• Ra(sn, sn+1) is the reward function defined as in the POMDP case. R depends on the joint

action vector a. In addition, all agents i share the same reward function.
• Oa(on, sn) is the observation model, defined as in the POMDP case. O depends on the joint

action and observation vectors a and o, respectively.
• γ ∈ [0, 1] is a discount factor as in the POMDP case.

The main difference between the swarMDP and the Dec-POMDP model lies in the fact
that the swarMDP explicitly assumes that all agents are homogeneous. Whereas under
the Dec-POMDP model, each agent could have a different action and/or observation
set, under the swarMDP model, all agents share the same local state space, action space,
observation space and policy. Due to this characteristic, which is called the homogeneity

Sensors 2021, 21, 4060 5 of 20

property, the agents are interchangeable. In addition, a single agent swarMDP reduces to
a POMDP.

The homogeneity property simplifies the problem of learning, i.e., the order of
the agents does not matter. Note that all agents share the same policy due to the ho-
mogeneity property (i.e., each agent would act like the others if they observed the same
observation on). Thus, we can use single-agent DRL algorithms and a centralized train-
ing/decentralized execution method to find a policy [37]. In our case, we make use of
TRPO and train a single policy πθ for all agents, which takes as input the local observation
of each agent o and outputs a local action a. During training, the local observations of each
agent are sent to the central learning algorithm for training. During execution, each agent
uses a copy of the learned policy.

Finally, the observation vector of agent i may include not only information about
agent i but also information about other agents if the agents are able to communicate.
Let us denote by on

i,i the information available to agent i about itself in time n, and on
i,j

the information available to agent i about agent j, j 6= i. A naive way of encoding this
information is to build the total observation vector of agent i, on

i by simply concatenating
on

i,i and all the vectors on
i,j. However, this concatenation causes a large input space, as well

as ignoring the permutation invariance inherent to a homogeneous swarm. A better option
consists in using mean embeddings [37,52], which are based on the fact that a probability
distribution P(X) can be represented as an element in a reproducing kernel Hilbert space
by its expected feature map µX = EX [φ(X)], where φ(X) is a feature mapping. There are
several possible mean embeddings that can be used, depending on the feature mapping
choice. We choose to employ the following:

• Neural Networks Mean Embedding (NNME): In this approach, each on
i,j is used as

input to a DNN, which outputs φ(on
i,j), where φ denotes the transformation done by

the DNN. The total observation vector of agent i, on
i is built by concatenating on

i,i to
the mean of the set of all φ(on

i,j).

• Mean-based Mean Embeddings (MME): Under this approach, we average on
i,j and

concatenate it to on
i,i. This vector is the input to the policy network.

Thus, mean embeddings are thus insensitive to the number of agents j and are also
insensitive to their order. The NNME is trained at the same time as the policy network,
allowing NNME to adapt to a concrete problem setup.

3. Defense Systems

We describe two defense mechanisms based on [30] for two different attack scenarios
in a WSN: a Spectrum Sensing Data Falsification (SSDF) attack and a backoff attack.
The former is a physical layer defense mechanism, while the latter is an MAC layer
defense mechanism.

3.1. Spectrum Sensing Data Falsification Attack

The SSDF is an attack that affects the physical layer, addressed against Cooperative
Spectrum Sensing (CSS), in which a WSN is used to determine whether a wireless channel
is being used or not. A survey of different SSDF attacks can be found in [53].

We use a defense mechanism based on soft fusion: the reports sent by the sensors to
a central entity known as Fusion Center (FC) are the energy levels Em they sense. As shown
by [54], if the channel is idle (i.e., only noise is in the channel), Em follows a chi-square
distribution, whereas if a signal is present, Em follows a non-central chi-square distribution.
We use a hypothesis test, where H0 means that the channel is idle and H1 means that
the channel is busy, and hence:

Em ∼
{

χ2
2k if H0

χ2
2k(2SNRm) if H1

, (2)

Sensors 2021, 21, 4060 6 of 20

where k is the time-bandwidth product and SNRm is the signal-to-noise ratio in sensor m
in natural units. An illustration of these probability density functions (pdfs) can be found
in Figure 1.

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Em

pd
f

Figure 1. Illustration of the pdf of the chi-squared distributions from (2). The thick pdf corresponds
to the H0 case: the chi-squared χ2

2k distribution; and the thinner pdfs correspond to the H1 case:
the non-central chi-squared χ2

2k(2SNRm) distributions for SNR values {2, 4, 6, 8, 10}, from left to right
in the plot. For all curves, k = 5 is the time-bandwidth parameter. Observe that, as the SNR increases,
the pdf curves are more separated for H0 and H1.

The SSDF attack proposed in [30] consists in reporting honestly Em if Em > ξ and
Em + ∆ if Em ≤ ξ, where ∆ and ξ are attack parameters: ∆ is the bias in the energy level
introduced by the AS and ξ is the attack threshold. In other words, the AS reports that
the channel is busy when it is actually idle if a certain threshold in the energy level is
satisfied. We set ∆ by using the means of the distributions (2), where the mean values µ of
the distributions under H0 and H1 are:

µ0 = 2k, µ1 = 2k + 2SNRm. (3)

We set ∆ = µ1 − µ0 = 2SNRm, resulting in a defense mechanism that is tuned to
detect a bias that tries to simulate the Em values when the channel is busy. Graphically,
according to Figure 1, this ∆ value translates the H0 pdf to the right ∆ units. Depending
on the value of ξ, Em values that are actually produced under H1 are also translated and
some Em measurements produced under H0 are not. Observe that if the pdfs under H0 and
H1 are close and overlap significantly (i.e., SNRm is low for sensor m), attacking may be
unnecessary in many cases.

We denote by G0 the situation in which an AS does not attack and G1 when it attacks.
Under attack, the pdf from (2) can be written as:

Em ∼


χ2

2k if G0, H0
χ2

2k(2SNRm) if G0, H1
χ2

2k + ∆ if G1, H0
χ2

2k(2SNRm) if G1, H1

, (4)

where we approximate the situation G1, H0 by a translation of the chi-squared pdf when
G0, H0. The accuracy of the approximation depends on the threshold ξ value. In addition,
observe that (4) assumes that under H1 hypothesis, there is no attack: again, this assumption
is an approximation that depends on ξ.

The defense mechanism proposed in [30] is based on two Neyman-Pearson tests,
which we summarize here for a better understanding. The first test decides whether sensor
m senses a busy channel using reports from other sensors as:

M

∏
i=1,i 6=m

P(Ei = ei|χ2
2k(2SNRm))

P(Ei = ei|χ2
2k)

H1
≷
H0

η, (5)

Sensors 2021, 21, 4060 7 of 20

where H1 and H0 are the energies from (2) and η is the threshold of test 1.
The second test is used to individually detect which sensors are providing false reports

(i.e., the sensors that are attacking). This test is only used for sensor m if H0 was the result
of test 1 (i.e., only noise detected) using the expressions from (4) as:

P(Em = em − ∆|χ2
2k)

P(Em = em|χ2
2k)

G1
≷
G0

ζ, (6)

where ζ is the threshold of test 2.
Test 2 allows detecting whether a sensor m is attacking or not. The defense mechanism

keeps a reputation scheme, in which there are two values r and s for each sensor in the WSN,
where s keeps track of how many times sensor m has attacked (s) and r counts how many
times sensor m has not attacked. The reputation of each sensor tPHY is computed as [30]:

tPHY =
r + 1

r + s + 2
, (7)

where, if tPHY falls below a certain threshold λPHY, the sensor is considered to be an AS and
is banned from the network. While in [30] the attack policy was fixed beforehand, we let
our DLA choose the energy level Em. Thus, it has to learn which value of Em it should send
and adapt it dynamically in order not to be detected by the defense mechanism. A scheme
summarizing the defense mechanism is in Figure 2.

Em Test (5)

η

Test (6)

ζ

Update tPHY (7) Detect ASs

λPHY

Noise detected

Figure 2. Block diagram for the defense mechanism against the SSDF attack. The inputs are the energy
levels reported by the sensors Em, the defense mechanism parameters are η, ζ and λPHY , and the result
is an updated list of sensors detected as ASs.

3.2. Backoff Attack

The second defense mechanism used in our experiments is a backoff attack, which
affects the MAC layer of any protocol that uses CSMA/CA mechanism (such as IEEE
802.11, ref. [55] and most WSN proposed MAC protocols [56,57]). If the attack is successful,
the ASs reach a higher share of the network throughput by not respecting the backoff
procedure. A study of its effects can be found in [58].

As a defense method, we use a modified Cramer-von Mises (CM) statistical test [59]
as in [30]. The CM test is fast to compute and allows deciding whether a stream of data
is adjusting to a certain distribution, using the cumulative distribution function (CDF).
We denote by xm the observed backoff time, which is the estimated backoff window size
that sensor m has used and is observed by the FC.

There are several parameters that need to be known in order to obtain xm. According
to the 802.11 standard [55], using the BA (Basic Access) mechanism, we can obtain the time
that the channel is occupied when there is a transmission (Tt) or a collision (Tc) as [60]:{

Tc = H + Tp + DIFS + δ
Tt = H + Tp + SIFS + Tδ + ACK + DIFS + Tδ

, (8)

where H is the total header transmission time (adding PHY and MAC layers headers),
DIFS and SIFS are interframe spacing defined in the standard, ACK is the transmission
time of an acknowledgement frame (ACK), Tδ is the propagation delay and Tp is the time
used to transmit payload bits. In this work, we use the values in Table 1. Using these
values, the FC can obtain xm as shown in [30].

Sensors 2021, 21, 4060 8 of 20

Table 1. MAC network parameters.

Parameter Value Parameter Value

MAC header 272 bits PHY header 128 bits

ACK 112 bits + PHY header Bit rate Rb,t 1 Mbps

SIFS 28 µs DIFS 128 µs

Tδ 1 µs Tp 4096 µs

In order to model the real distribution of the window backoff, we follow the mecha-
nism used in [55]. After a successful transmission, the backoff window size is divided by 2,
whereas after a collision, the backoff window size is doubled. The backoff window size
is forced to be in the interval [CWmin, CWmax], where these parameters are the minimum
and maximum backoff window size, respectively. We consider that CWmin = 32 = 25 and
CWmax = 1024 = 210 as in [55], with pc being the collision probability, nc the number of
collisions and U[α, β] the random integer uniform distribution between α and β; hence,
the distribution of the window backoff if there is no attack, fo(xm), is

f0(xm) =

{
∑nc

j=0 U[0, 25+j] w.p. pnc
c (1− pc) if nc ≤ 5

∑5
j=0 U[0, 25+j] + ∑nc

j=6 U[0, 210] w.p. pnc
c (1− pc) if nc > 5

, (9)

where w.p. stands for with probability. The collision probability pc can be estimated by
the FC by counting the number of successful transmissions and the number of collisions,
and computing the proportion of collisions. Using (9) and the estimated pc, we can obtain
F0(xm), the cumulative distribution of f0(xm).

The modified CM test proposed in [30], which we summarize here for the sake of
clarity, requires K observations x1, x2, ..., xK from sensor m, which are used to obtain F1,
the empirical CDF of the window size from sensor m. The test also requires L samples
y1, y2, ..., yL generated from the real distribution when there is no attack. The test statistic
for each sensor θ is obtained as

θ1 =
K

∑
j=1

sgn(F0(xm)− F1(xm))[F0(xm)− F1(xm)]
2,

θ2 =
L

∑
j=1

sgn(F0(ym)− F1(ym))[F0(ym)− F1(ym)]
2,

θ =
KL

(K + L)2 (θ1 + θ2),

(10)

where sgn(x) is the sign function. The value of θ gives a measurement of differences
between the two CDFs. The magnitude of θ depends on the difference between the cu-
mulative distributions; i.e., if F0 and F1 differ significantly, |θ| will be large. Moreover,
observe that the sign information is crucial to determine whether F1 is above or below F0,
a positive θ indicates that F0 is mostly above F1, which means that the backoff window
values for sensor m are larger than expected, and hence, sensor i is not doing a backoff
attack. The opposite happens when θ sign is negative, indicating that F0 is mostly under F1,
which means that the observed values of backoff window for the sensor m are smaller than
expected, and hence, a backoff attack is being detected. Hence, the reputation in the MAC
layer of each sensor m is determined as follows [30]:

tMAC = e−D2
, D = min{θ, 0}. (11)

In (11), tMAC will be 1 (i.e., sensor m is completely trusted) when θ is positive, which
is the case in which there is no attack. As θ becomes negative, tMAC decreases, indicating
that sensor m is less trusted because it might be performing a backoff attack. If tMAC falls

Sensors 2021, 21, 4060 9 of 20

below a certain threshold λMAC, the sensor m is considered to be an AS and it is banned
from the network. A scheme summarizing the defense mechanism is in Figure 3.

x1, x2, ..., xK

y1, y2, ..., yL ∼ f0(xm) (9)

Test (10) Update tMAC (11) Detect ASs

λMAC

θ

Figure 3. Block diagram for the defense mechanism against the backoff attack. The inputs are a set of
K backoff windows used by a sensor and a set of L backoff window sampled from f0(xm) (9). In this
case, the defense mechanism parameters are K, L and λMAC, and the result is an updated list of
sensors detected as ASs.

4. Deep Reinforcement Learning Attacker Architecture

We start our discussion of the DLA architecture by relating the attack description from
Section 3 with the swarm model presented in Section 2. First, let us note that the state of
the defense mechanism is the reputation value for each sensor (tPHY, tMAC). If the ASs
had access to this value and knew the reputation threshold λPHY or λMAC, we would
have an MDP setting where ASs could choose what to do in order not to be discovered
following similar procedures to [61]. However, this is not a realistic assumption, as in many
cases the ASs may not know the concrete parameters of the defense mechanism, or even
the defense technique implemented by the defense mechanism. However, we can assume
that ASs have access to values that can be observed, such as the time from last transmission
attempt, the energy levels reported or whether the node has been banned from the network.
This means that we shift from an MDP model to a POMDP, as ASs only have access to
observations rather than the state of the defense mechanism. This also means that ASs do
not have a priori knowledge about the defense mechanism. Another important remark is
that we may assume that cooperation among ASs may increase the attack performance.
As we have mentioned in Section 2, we can model this situation by using the swarm
model. Concretely, we can use the swarMDP model, as we can assume that all ASs are
homogeneous and interchangeable (i.e., they share a common goal and the set of states,
actions, observations and policy), and we may benefit from the computational advantage
that this model brings over the Dec-POMDP model.

Thus, let us model our attack situation by making use of the swarMDP model. We
assume that we have a swarm of ASs trying to attack a WSN, where GSs are all sensors
of the WSN except the ASs. At each timestep n, the ith AS has a certain observation on

i
(which, as we will see shortly, may include information from other sensors), and it uses its
policy function, πθ(on

i), to select a certain action an
i . After this action is executed, the ith

AS receives the common reward rn and the next observation, on+1
i . Under this scheme, we

have the following characteristics for the SSDF attack:

• A continuous set of actions in the range [0, 1], where the action indicates the normal-
ized energy that the sensor reports to the FC.

• We consider that the reward to each AS is +1 if the FC decides that there is a primary
transmitting, whereas the reward to each AS is 0 if the FC decides that there is no
primary transmitting. We use a maximum number of timesteps for each episode
and if all ASs are discovered we terminate the episode. The DLA must therefore
learn to maximize the number of timesteps without being discovered in order to
maximize its reward. The punishment for being detected consists of being banned
from the network, which means that the agent stops receiving rewards. Furthermore,
the reward also tries to increase the probability of misdetection of the WSN; that is, it
makes the FC believe that the primary is transmitting more often than it really does.

• In order to build the observations vector, each agent stores its last five actions (i.e.,
energy reported) and a binary flag indicating whether the agent has been already

Sensors 2021, 21, 4060 10 of 20

discovered by the defense mechanism (and hence, banned from the network) or not.
We assume that agent i can also access the observations of other sensors j 6= i, i.e.,
ASs can communicate their local observations to other sensors (which can be imple-
mented either by direct communication among nodes or by observing the behavior of
other sensors).

For the backoff attack, we have the following:

• The action space is composed by two discrete actions that indicate whether the sensor
starts transmitting or not. That is, the actions start transmitting in the current time
slot or not. Hence, two consecutive actions may be separated by several physical time
slots if no sensor starts transmitting.

• The reward is −1 in case that a GS starts transmitting and 0 otherwise. Our choice of
the rewards is different as the attacks have different targets: in case of the SSDF attack,
we want to detect the primary as often as possible. However, in the backoff attack,
we want GSs to transmit as little as possible. We set a fixed simulation time, which
is completed regardless of whether the ASs are discovered. Thus, the DLA needs to
learn not to be discovered while preventing GSs from transmitting.

• In order to build the observations vector, we use the time difference between the cur-
rent timestep and the last K transmissions (i.e., this indicates the frequency of at-
tempted transmission of the sensor). This difference is normalized by the maximum
number of timesteps. We also add a binary flag indicating whether the agent has been
discovered by the defense mechanism or not, as in the SSDF case.

We remark that, in both attacks, the observation does not match the system state,
which are the reputation (tPHY and tMAC) of each sensor. Rather, each ASs only has access
to a limited set of information about its past actions and information about whether a sensor
has been banned or not by the defense mechanism. In addition, since we use a model-free
DRL approach, and we do not require a model of the transition probabilities for the attacks,
which is also a significant advantage over methods that require explicit models of these
probabilities, as this allows us to significantly ease the required computational load [31].
Furthermore, we aim to study whether communicating the local observations can be
exploited by the DLA agent to learn better attack mechanisms. Therefore, we also compare
with the non-communication case.

The set of observations, actions and rewards of each agent in each timestep is used to
update the common policy πθ using TRPO. We use as policy a feed-forward DNN, which
takes as input the observation vector on

i and outputs the action. The two first layers of
the network have 256 neurons and use rectified linear activations. As TRPO can be used
for continuous and discrete actions, we use it for both of our attacks, as the SSDF attack
has a continuous action set, while the backoff attack has two discrete actions.

Finally, as mentioned before, we want to test the influence of communication in the at-
tack performance. As mentioned before, a possible option consists of concatenating the local
observation of each sensor, although this approach means that the policy input depends
on the number of sensors, hence complicating the learning process when there are sev-
eral sensors. Moreover, this method is not invariant to the number and order of sensors.
A better alternative is MEs, which we use to combine the observations from the agents
in the case that there is communication in a meaningful way. We emphasize that MEs allow
a combination that is invariant to the number and order of the agents. We remark that there
are two different kind of sensors: ASs and GSs. In order to combine the sensor observations
meaningfully, we concatenate one mean embedding for the observations of the ASs and
another with the observations of the GSs. A graphical description of all the architectures
that we use are in Figure 4.

Sensors 2021, 21, 4060 11 of 20

on
i,AS1

MEAS

φ(on
i,AS1

)

... on
i,ASK

MEAS

φ(on
i,ASK

)

on
i,GS1

MEGS

φ(on
i,GS1

)

... on
i,GSL

MEGS

φ(on
i,GSL

)

on
i,i

Mean Mean

Concatenate

Policy Network
on

i

(a) Communication and ME

on
i,1 ... on

i,j on
i,i

Concatenate

Policy Network
on

i

(b) Communication without ME

on
i,i

Policy Network

on
i

(c) No communication

Figure 4. Sketch of the different DLA architectures. The difference in the architectures lies in how
the observation on

i is obtained. In (a,b), there is communication among the swarm agents, and hence,
each agent i has access to the local observations of the rest of the agents. (a) shows the architecture
when a Mean Embedding is used: we use separate Mean Embeddings for ASs and GSs, and we
assume that there are K + 1 ASs (agent i is also an AS), L GSs and that on

i is the concatenation
of the mean values of the Mean Embeddings and the local information of the agent i. (b) shows
the architecture when there is communication but we do not use any Mean Embedding: in this case,
on

i is the concatenation of the observations. (c) shows the no-communication case in which only
the local observation is available.

5. Results

We evaluate our DLA architectures on the SSDF and the backoff attack on a WSN that
contains 10 GSs and {1, 3, 10} ASs. For each attack, we tested four different setups:

• Communication and Neural Networks Mean Embedding (CNNME) setting: in this
case, ASs communicate among them and use MEs to aggregate information (situation
(a) in Figure 4). Concretely, we use NNME, which is based on using a DNN as ME
where the weights of the DNN are trained together with the TRPO policy.

• Communication and Mean-based Mean Embedding (CMME) setting: in this case,
ASs communicate among them and use MEs to aggregate information (situation (a)
in Figure 4). Concretely, we use MME, which consists of using the mean operation as ME.

• Communication without using mean embeddings (C) setting: in this case, ASs com-
municate among them without using any ME to aggregate information (situation (b)
in Figure 4). In this case, the input size of the policy network is equal to the dimension
of on

i and thus increases with the number of ASs, while it remains invariant for all
other cases.

• Without any communication among ASs (NC) setting (situation (c) in Figure 4). In this
case, each AS only uses its local observations in order to obtain their local policy.

For CNNME, CMME and C settings, the reward that each agent maximizes is the sum
of the rewards of all ASs, by following the swarMDP model (i.e., they have a common
goal). We train the policy network until convergence, using 500 TRPO iterations for both
attacks. In each iteration, a batch with 104 timesteps is used to optimize the policy. For each
combination of number of ASs, DLA setup and attack type, we repeat the training using

Sensors 2021, 21, 4060 12 of 20

10 different seeds, as the results of DRL methods are known to be dependent on initial
conditions [62]. The code used is available at https://github.com/jparras/dla (accessed
on 11 June 2021).

5.1. Baselines

We remark that we do not know the optimal solution to the underlying POMDP
that models the attack. In order to evaluate the quality of the results of the DLA agent,
we compare the results obtained to three baselines policies based on the always-false,
always-busy and always-free attack policies from [63]:

• Random policy (RP), which samples the actions uniformly from the action space; i.e.,
in the SSDF attack, it means that ASs report a random energy level, and in the backoff
attack, ASs transmit randomly.

• Always High (AH), which selects the highest action possible; i.e., in the SSDF attack,
it means that ASs always report the maximum energy level, and in the backoff attack,
ASs always transmit.

• Always Low (AL), which selects the lowest action possible; i.e., in the SSDF attack, it
means that ASs always report the minimum energy level, and in the backoff attack,
ASs never transmit.

The advantages of these baselines used in the literature are that they are simple to
implement, they do not require knowing the defense mechanism and they have a low com-
plexity. However, they are unable to adapt in order to exploit a certain defense mechanism,
although, as shown in [63], they can be successful attack policies in some cases. More
complex attacks could be devised by having knowledge of the defense mechanism [31],
although we do not use them in this paper to have a fair comparison with DLA: none of
the policies we test relies on an a priori knowledge of the defense mechanism.

5.2. Spectrum Sensing Data Falsification Attack

We use finite horizon episodes; i.e., in each episode, the FC asks the sensors up to
250 times to report the energy level they measure. We consider that the duty cycle is 0.2;
i.e., the probability that the channel is actually occupied by a primary transmitter is 0.2.
If an AS is detected, the episode ends for this AS, since the FC does not ask it to send
more reports. We implement the defense mechanism explained in Section 3.1, with η = 1,
ζ = 1.6 [30] and λPHY = 0.5. If the reputation of a sensor tPHY falls below λPHY, the sensor
is detected as an AS and the episode ends. If the AS attacks indiscriminately, the episode
will end early and its reward will be low. At each timestep, the defense mechanism is
invoked and the sensor reputation is updated.

At the beginning of each episode, we pick the sensor distances to the FC, dm, from
a uniform random distribution in the range [800, 1000] m. We consider that the transmitter
power is Ptx = 23 dBm and use the following path loss expression:

Pm = Ptx −
(
35 + 3 · 10 log10(dm)

)
, (12)

where Pm is the received power in the sensor m in dBm. This expression allows us to obtain
SNRm = 10

Pm−NP
10 , where we consider the noise power to be NP = −110 dBm. We consider

the time-bandwidth product to be k = 5. Finally, we generate the Em values sampling from
the distributions in (2), depending on whether the primary is transmitting or not.

5.3. Backoff Attack

The backoff attack is simulated for 5 × 105 µs. In each timestep, an AS decides
whether to start transmitting or stay idle. Hence, timesteps are related to backoff steps, not
to physical time (i.e., if an agent starts transmitting in timestep n, timestep n + 1 will take
place when that agent finishes transmitting). We do not penalize collisions. The defense
system explained in Section 3.2 is used, with K = 5 and L = 1000. If the reputation of
a sensor tMAC falls below λMAC = 0.5, the episode ends for this sensor. We note that

https://github.com/jparras/dla

Sensors 2021, 21, 4060 13 of 20

if the AS attacks indiscriminately, the episode ends early with a low reward: recall that
a final reward is given to each AS that corresponds to the remaining reward of the episode;
i.e., if the AS is caught, it does not have the opportunity any more to hinder the GSs to
transmit, yielding a lower reward. We use the network parameters from Table 1 to simulate
the backoff attack. The defense mechanism is run once every give timesteps in order to
ease the computational load.

5.4. Results

The results for both attacks can be observed in Figure 5 and Tables 2–4. First, in
Figure 5, we observe that ASs do learn to successfully exploit the defense mechanism
in both attacks, as the reward increases with the TRPO iterations. There is a higher vari-
ability among seeds in the SSDF attack, which is a known problem that arises when using
DRL methods [62]. The remarkable fact is that this attack improvement is achieved simply
by interacting with the defense mechanism, as the ASs do not have a priori knowledge
about it.

0 200 400

−35

−30

−25

0 200 400
10

20

30

0 200 400

50

100

150

(a) Total reward during training for the SSDF attack case. Horizontal axis correspond to the TRPO
iteration, vertical axis is the average reward ± one standard deviation. From left to right: 1/3/10 ASs.

Higher is better.

0 200 400
−50

−45

−40

−35

0 200 400

−35

−30

−25

0 200 400
−25

−20

−15

−10

−5

(b) Total reward during training for the backoff attack case. Horizontal axis correspond to the TRPO
iteration, vertical axis is the average reward ± one standard deviation. From left to right: 1/3/10 ASs.

Higher is better.

CNNME: Communication with NNME C: Communication without ME
CMME: Communication with MME NC: No communication

Figure 5. Training results for the SSDF and backoff attacks for the best three seeds. We observe that the variability between
seeds is higher in the SSDF attack. Also, note how DLAs improve their reward as training progresses, and specifically,
observe that they do so simply by interacting with the defense mechanism.

Sensors 2021, 21, 4060 14 of 20

Table 2. Final rewards obtained for each combination of attack, number of ASs and setup. The values were obtained
averaging 50 episodes for the best seed of each attack policy after training. We show the average reward ± one standard
deviation. Bold entries show the best results, where a Welch test is used to detect whether means are significantly different
for a significance level α = 0.01. Higher is better.

ASs CNNME CMME C NC RP AH AL

SSDF
1 22.66± 3.36 22.07± 4.54 19.93± 4.92 22.79± 4.87 5.35 0.30 11.66
3 18.02± 6.02 36.22± 10.51 17.4± 6.03 22.95± 3.33 14.47 1.42 0.53
10 142.88± 0.00 142.88± 0.00 142.88± 0.00 24.97± 6.78 23.06 142.88 0.00

Backoff
1 −35.86± 4.97 −35.54± 3.96 −37.51± 3.46 −34.90± 3.30 −75.88 −77.81 −44.62
3 −24.48± 3.74 −24.36± 3.47 −26.72± 3.68 −24.7± 3.21 −71.40 −78.84 −43.67
10 −4.38± 3.10 −7.54± 2.49 −10.39± 3.10 −9.12± 2.92 −66.43 −78.16 −43.99

Table 3. Proportion of agents detected as ASs by the defense mechanism for each combination of attack, number of ASs and
setup. The values were obtained averaging 50 episodes for the best seed of each policy after training. We show the average
proportion ± one standard deviation.

ASs CNNME CMME C NC RP AH AL

SSDF
1 0.00± 0.00 2.00± 14.00 2.00± 14.00 2.00± 14.00 82.00 100.00 0.00
3 53.33± 25.82 0.00± 0.00 54.00± 24.85 22.00± 20.67 77.33 100.00 0.00

10 0.00± 0.00 0.00± 0.00 0.00± 0.00 61.00± 21.93 80.60 0.00 0.00

Backoff
1 22.00± 41.42 4.00± 19.60 42.00± 49.36 8.00± 27.13 100.00 100.00 0.00
3 47.33± 35.96 30.00± 34.80 41.33± 28.72 21.33± 21.87 100.00 100.00 0.00

10 66.80± 18.16 59.20± 26.97 74.00± 18.00 40.60± 21.58 100.00 100.00 0.00

Table 4. Final results in terms of primary detection percentage (SSDF) and kbits that GSs transmit (backoff), obtained for
each combination of attack, number of ASs and setup. The values were obtained averaging 50 episodes for the best seed of
each attack policy after training. We show the average value ± one standard deviation. Higher is better in SSDF; lower is
better in backoff attack.

ASs CNNME CMME C NC RP AH AL No ASs

SSDF
1 15.91± 2.22 15.34± 3.16 14.65± 3.40 16.06± 3.26 9.84 10.80 8.24 8.00
3 14.61± 12.68 25.75± 7.36 12.03± 4.14 16.58± 2.23 15.78 45.80 0.35 28.00

10 100.00± 0.00 100.00± 0.00 100.00± 0.00 17.16± 4.42 18.09 100.00 0.00 22.00

Backoff
1 258.79± 19.43 258.46± 17.36 275.01± 15.78 252.81± 16.83 328.83 326.78 350.13 255.4
3 167.03± 24.65 160.65± 19.23 182.85± 26.77 161.46± 17.51 312.20 331.12 348.00 211.87

10 27.53± 23.69 43.50± 16.54 60.87± 17.84 54.07± 20.50 295.65 328.25 348.73 130.57

In Table 2, we show the final rewards obtained by using all the DLA architectures and
compare them with the baseline policies. The baselines provide clearly worse results than
the DLA architectures proposed. If we focus on the results of the SSDF attack, we first see
that DLA with communication and ME have an advantage over the other methods. With
a single AS, the performance of all DLA is similar. When there are 10 ASs, the defense
mechanism can be overpowered by continuously reporting high energy levels: thus, not
only all communication-based DLAs, but also the AH baseline, provide the same rewards.
In all cases, all DLAs provide a significantly better reward than the baselines (except for
the commented case of AH baseline with 10 ASs).

If we focus on the results of the backoff attack, which has a statistically complex
defense mechanism (see Section 3.2), we note, again, that the baseline results are consider-
ably improved by all DLAs. This is due to the fact that DLAs are able to learn to exploit
the defense mechanism successfully, while the baselines fail to provide good results. In this
case, having communication between agents using an ME consistently provides the best

Sensors 2021, 21, 4060 15 of 20

results: we believe that this is due to the fact that the swarMDP model is specially suited
for the context of network attacks, as it facilitates exploiting the defense mechanism by
using the local observations of the other nodes.

One of the main targets in our DLA was to be able to attack without being discovered,
that is, to camouflage. Hence, the rewards presented in Section 4 were designed to exploit
the defense mechanism and not be detected. Thus, the reward scheme implicitly induces
a trade-off between camouflage and exploit of the defense mechanism that can be observed
in Tables 3 and 4. First, Table 3 shows the detection proportion for each DLA and baseline:
in the SSDF case, a low detection is usually related to a high reward (i.e., low detection and
attack come together) except for the AL baseline, which we remark consisted of always
reporting a low energy level (and hence, ASs are never detected). However, in the backoff
attack, the ranges of detection proportion are larger: this may be due to a cooperative
behavior among ASs, such that some ASs are detected for the sake of getting a better
reward (which, recall, is shared among all ASs).

Table 4 shows the attack results in terms directly related to the attack target. In the SSDF
case, we show the proportion of times that the primary is detected, which is always in the 10
ASs case: as we mentioned before, 10 ASs are enough to overpower the defense mechanism
in this attack. In the backoff case, we show the bits transmitted by GSs, and there are two
conclusions from the results that are important. First, the baselines actually provide GSs
with more resources: either the ASs are detected fast (RP, AH baselines in Table 3) and hence
banned from the network, or they do not attack (AL baseline), and both situations lead to
the network to have less sensors to split the bandwidth, as mostly GSs are transmitting. For
instance, in the 10 ASs case, there are 10 GSs to access the bandwidth, as 10 ASs are either
banned or not transmitting, compared to 20 sensors if all the sensors were GSs. Second,
the DLA may significantly reduce the transmission rates of GSs, up to an 80% in the case of
the CNNME with 10 ASs, which is a very notable decrease in the system throughput.

6. Conclusions

In this work, we propose using DRL tools in order to create an attacker architecture
able to challenge several defense mechanisms used in WSN. We considered attacks on
the PHY and MAC layers, and show that our approach poses strong challenges to current
defense mechanisms:

1. We do not need to know the state of the system (i.e., the reputations), as DLA relies
only on partial observations (i.e., information about how the sensors have interacted
in the past that can be observed by other sensors). Even though we have only par-
tial observations, they provide very good results, especially when the ASs are able
to communicate their observations—in Table 2, the results using communication
and ME consistently are the best. However, even when this communication is not
considered—i.e., the NC setup—the results are still better than the baselines. Even
though the underlying model of the attack is a POMDP, DLA learns to attack having
only a limited amount of past observations. Thus, when attacking a network, if com-
munication among ASs is possible, our results point towards using ME to aggregate
the local information in a meaningful way. We test using two different ME types:
NNME, which may extract better features at the cost of extra training complexity, and
MMEs, which provide a lower training computational cost but obtain more limited
features for the policy. The results shown in Table 2 show that both MEs provide good
results, and hence, choosing between them may depend on the concrete problem to
solve and the training restrictions we may have.

2. Since DLA does not need to know a priori which defense mechanism it is facing, it
is a very flexible approach. Thus, DLA could be the base for a universal attacker,
successful in exploiting many defense mechanisms. Indeed, DRL methods have been
used to provide human-like performance in many Atari games [5], so DRL could also
be applied to exploit defense mechanisms in a universal fashion.

Sensors 2021, 21, 4060 16 of 20

3. It is a method with balanced computational requirements. The training process is
the most computationally expensive part of the system. However, most of this cost
was used in generating samples from the defense mechanisms: training the DNNs
using gradient techniques was fast. This low training cost appears because we use
simple DNNs, which, however, are enough to exploit the defense mechanisms. Once
the DNN is trained, the policy is quick to execute and can be deployed in devices
with low computational capabilities.

4. We remark that we have used the same set of hyper-parameters for all of our sim-
ulations. We have done no fine-tuning of these hyper-parameters, and thus, our
approach may suit very different attack situations with minimal tuning. Equivalently,
the results obtained could be improved by doing a fine-tuning for each situation.

However, there are also several drawbacks that arise from the results of this paper
and that are future lines of research that can further advance this work:

1. The reward scheme has a strong influence on the attack that is learned. There is
a tradeoff between attacking and not being discovered, and hence, modifying the re-
ward scheme will cause the DLA to learn a different attack strategy. In other words,
we must carefully design the reward depending on the attack result desired. Note
that this is not something specific to our problem but a general problem that arises
in the RL field.

2. Our approach relies on the DLA being able to interact with a network continuously,
episode after episode. As we considered that ASs could be banned during episodes,
this means that the banning must be temporal. If it is permanent, then the DLA
could not learn. Note, however, that if ASs had access to a simulator of the defense
mechanism, this problem would be overcome.

3. Our DLA is not sample-efficient, as it requires many samples to learn; in addition,
the results are dependent on the initial parameters of the policy DNN. These are
known problems of DRL methods, which are subject to current research [62]. A very
promising research field that could address these problems is few-shot learning,
focused on learning from a few samples. There are several works in this area that
may be used to improve the sample efficiency of DRL methods, such as [64,65], and
hence could further improve the results of attacks to WSN.

4. A related challenge comes from the fact that we have assumed a static defense
mechanism, but it could be dynamic and change after a series of attack attempts have
been detected. DLA may be currently vulnerable to this defense strategy due to its
low sample efficiency, and hence, we expect that the research on increasing the DRL
sample efficiency would also be useful to prevent and/or adapt quickly to changes
in the defense mechanism. Another alternative could consist in replacing a banned
AS with a new one that is initialized based on the experience of the banned AS (i.e.,
by having the same policy as the banned one).

Hence, the attacking approach that we propose in this work presents strong chal-
lenges to current WSN defense mechanisms. First, because of the growing computational
capabilities of current hardware, there could soon, if not already, be sensors with enough
computational capabilities to implement a DLA [66]. An alternative approach could be
based on the use of evolutionary techniques to perform the optimization, as there are many
swarm algorithms based on these ideas such as [33–36]. Second, because DLA is adaptive
and flexible, not requiring an a priori modeling of the defense mechanism nor knowledge
of their parameters, it can learn to exploit a wide range of defense mechanisms. Thus, it
is of capital importance to research defense mechanisms against such attack mechanisms,
in order to minimize the threat they pose. A promising defense mechanism could be one
in which the defense mechanism also uses RL tools for learning how to defend, which
could mean entering the field of Multi Agent Competitive Learning [67,68], which still
poses strong challenges.

Sensors 2021, 21, 4060 17 of 20

Author Contributions: Conceptualization, J.P., M.H., S.Z. and G.N.; methodology, J.P., M.H., S.Z.
and G.N.; software, J.P. and M.H.; validation, J.P., M.H., S.Z. and G.N.; formal analysis, J.P., M.H.,
S.Z. and G.N.; investigation, J.P., M.H., S.Z. and G.N.; resources, J.P., M.H., S.Z. and G.N.; writing—
original draft preparation, J.P.; writing—review and editing, J.P., M.H., S.Z. and G.N.; visualization,
J.P.; supervision, S.Z. and G.N.; project administration, S.Z. and G.N.; funding acquisition, S.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a Ph.D. grant given to the first author by Universidad
Politécnica de Madrid, as well as by the Spanish Ministry of Science and Innovation under the grant
TEC2016-76038-C3-1-R (HERAKLES).

Acknowledgments: We would like to thank Riccardo Polvara for his hardware support and expertise,
which significantly helped while testing the software used in this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A3C Asynchronous Advantage Actor Critic
ACER Actor Critic with Experience Replay
ACK Acknowledgement
AH Always High
AL Always Low
AS Attacking Sensor
CDF Cumulative Distribution Function
CM Cramer-von Mises
CNNME Communication and Neural Networks Mean Embedding
CMME Communication and Mean-based Mean Embedding
DLA Deep Learning Attacker
DNN Deep Neural Network
DoS Denial of Service
DRL Deep Reinforcement Learning
DRQN Deep Recurrent Q-Networks
DQN Deep Q-Networks
FC Fusion Center
GS Good Sensor
MAC Medium Access Control
MDP Markov Decision Process
ME Mean Embedding
MME Mean-based Mean Embedding
NNME Neural Networks Mean Embedding
PHY Physical
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
QoS Quality of Service
RL Reinforcement Learning
RNN Recurrent Neural Network
RP Random Policy
SNR Signal-to-Noise Ratio
SSDF Spectrum Sensing Data Falsification
TRPO Trust Region Policy Optimization
WSN Wireless Sensor Network

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998; Volume 1.
2. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
3. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.

http://doi.org/10.1613/jair.301

Sensors 2021, 21, 4060 18 of 20

4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep
reinforcement learning. arXiv 2013, arXiv:1312.5602.

5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

6. Hausknecht, M.; Stone, P. Deep recurrent q-learning for partially observable mdps. arXiv 2015, arXiv:1507.06527.
7. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep

reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016; pp. 1928–1937.

8. Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample efficient actor-critic with experience
replay. arXiv 2016, arXiv:1611.01224.

9. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1889–1897.

10. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

11. Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine learning in wireless sensor networks: Algorithms, strategies, and
applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018. [CrossRef]

12. Curiac, D.; Volosencu, C.; Doboli, A.; Dranga, O.; Bednarz, T. Neural network based approach for malicious node detec-
tion in wireless sensor networks. In Proceedings of the WSEAS International Conference on Circuits, Systems, Signal and
Telecommunications, Gold Coast, QLD, Australia, 17–19 January 2007; pp. 17–19.

13. Curiac, D.I.; Plastoi, M.; Banias, O.; Volosencu, C.; Tudoroiu, R.; Doboli, A. Combined malicious node discovery and self-
destruction technique for wireless sensor networks. In Proceedings of the 2009 Third International Conference on Sensor
Technologies and Applications, Athens, Greece, 18–23 June 2009; pp. 436–441.

14. Yang, K. Wireless Sensor Networks; Springer: Berlin, Germany, 2014.
15. Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential

synergies. J. Supercomput. 2014, 68, 1–48. [CrossRef]
16. Ndiaye, M.; Hancke, G.P.; Abu-Mahfouz, A.M. Software defined networking for improved wireless sensor network management:

A survey. Sensors 2017, 17, 1031. [CrossRef] [PubMed]
17. Shi, Y.; Sagduyu, Y.E.; Erpek, T.; Davaslioglu, K.; Lu, Z.; Li, J.H. Adversarial deep learning for cognitive radio security: Jamming

attack and defense strategies. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC
Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

18. Xiao, L.; Wan, X.; Lu, X.; Zhang, Y.; Wu, D. IoT Security Techniques Based on Machine Learning. arXiv 2018, arXiv:1801.06275.
19. Cannady, J. Next generation intrusion detection: Autonomous reinforcement learning of network attacks. In Proceedings of

the 23rd National Information Systems Security Conference, Baltimore, MD, USA, 16–19 October 2000; pp. 1–12.
20. Gwon, Y.; Dastangoo, S.; Fossa, C.; Kung, H. Competing mobile network game: Embracing antijamming and jamming strategies

with reinforcement learning. In Proceedings of the 2013 IEEE Conference on Communications and Network Security (CNS),
National Harbor, MD, USA, 14–16 October 2013; pp. 28–36.

21. Xiao, L.; Li, Y.; Liu, G.; Li, Q.; Zhuang, W. Spoofing detection with reinforcement learning in wireless networks. In Proceedings of
the Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–5.

22. Xiao, L.; Xie, C.; Chen, T.; Dai, H.; Poor, H.V. A mobile offloading game against smart attacks. IEEE Access 2016, 4, 2281–2291.
[CrossRef]

23. Xiao, L.; Li, Y.; Huang, X.; Du, X. Cloud-based malware detection game for mobile devices with offloading. IEEE Trans.
Mob. Comput. 2017, 16, 2742–2750. [CrossRef]

24. Aref, M.A.; Jayaweera, S.K.; Machuzak, S. Multi-agent reinforcement learning based cognitive anti-jamming. In Proceedings of
the Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

25. Han, G.; Xiao, L.; Poor, H.V. Two-dimensional anti-jamming communication based on deep reinforcement learning. In Proceedings
of the 42nd IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, 5–9 March 2017.

26. Li, Y.; Quevedo, D.E.; Dey, S.; Shi, L. SINR-based DoS attack on remote state estimation: A game-theoretic approach. IEEE Trans.
Control Netw. Syst. 2017, 4, 632–642. [CrossRef]

27. Li, M.; Sun, Y.; Lu, H.; Maharjan, S.; Tian, Z. Deep reinforcement learning for partially observable data poisoning attack
in crowdsensing systems. IEEE Internet Things J. 2019, 7, 6266–6278. [CrossRef]

28. Fragkiadakis, A.G.; Tragos, E.Z.; Askoxylakis, I.G. A survey on security threats and detection techniques in cognitive radio
networks. IEEE Commun. Surv. Tutor. 2013, 15, 428–445. [CrossRef]

29. Sokullu, R.; Dagdeviren, O.; Korkmaz, I. On the IEEE 802.15. 4 MAC layer attacks: GTS attack. In Proceedings of the 2008 Second
International Conference on Sensor Technologies and Applications (sensorcomm 2008), Cap Esterel, France, 25–31 August 2008;
pp. 673–678.

30. Wang, W.; Sun, Y.; Li, H.; Han, Z. Cross-layer attack and defense in cognitive radio networks. In 2010 IEEE Global Telecommuni-
cations Conference (GLOBECOM 2010), Miami, FL, USA, 6–10 December 2010; pp. 1–6.

31. Parras, J.; Zazo, S. Learning attack mechanisms in Wireless Sensor Networks using Markov Decision Processes. Expert Syst. Appl.
2019, 122, 376–387. [CrossRef]

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/COMST.2014.2320099
http://dx.doi.org/10.1007/s11227-013-1021-9
http://dx.doi.org/10.3390/s17051031
http://www.ncbi.nlm.nih.gov/pubmed/28471390
http://dx.doi.org/10.1109/ACCESS.2016.2565198
http://dx.doi.org/10.1109/TMC.2017.2687918
http://dx.doi.org/10.1109/TCNS.2016.2549640
http://dx.doi.org/10.1109/JIOT.2019.2962914
http://dx.doi.org/10.1109/SURV.2011.122211.00162
http://dx.doi.org/10.1016/j.eswa.2019.01.023

Sensors 2021, 21, 4060 19 of 20

32. Šošić, A.; KhudaBukhsh, W.R.; Zoubir, A.M.; Koeppl, H. Inverse reinforcement learning in swarm systems. In Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS 17), São Paulo, Brazil, 8–12 May 2017;
pp. 1413–1421.

33. Wang, G.G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants, hybrids and
applications. Artif. Intell. Rev. 2019, 51, 119–148. [CrossRef]

34. Li, J.; Lei, H.; Alavi, A.H.; Wang, G.G. Elephant herding optimization: Variants, hybrids, and applications. Mathematics 2020,
8, 1415. [CrossRef]

35. Feng, Y.; Deb, S.; Wang, G.G.; Alavi, A.H. Monarch butterfly optimization: A comprehensive review. Expert Syst. Appl.
2020,168, 114418. [CrossRef]

36. Li, W.; Wang, G.G.; Gandomi, A.H. A survey of learning-based intelligent optimization algorithms. Arch. Comput. Methods Eng.
2021, 1–19. [CrossRef]

37. Hüttenrauch, M.; Šošić, A.; Neumann, G. Deep Reinforcement Learning for Swarm Systems. J. Mach. Learn. Res. 2019, 20, 1–31.
38. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
39. Bertsekas, D.P. Dynamic Programming and Optimal Control; Athena Scientific: Belmont, MA, USA, 1995; Volume 1.
40. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control.

In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1329–1338.
41. Littman, M.L.; Sutton, R.S.; Singh, S.P. Predictive representations of state. In Advances in Neural Information Processing Systems

(NIPS); MIT Press: Cambridge, MA, USA, 2001; Volume 14, p. 30.
42. Singh, S.P.; Littman, M.L.; Jong, N.K.; Pardoe, D.; Stone, P. Learning predictive state representations. In Proceedings of the 20th

International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 712–719.
43. Wang, G.G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy mutation and position

clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]
44. Li, J.; Li, Y.x.; Tian, S.s.; Xia, J.l. An improved cuckoo search algorithm with self-adaptive knowledge learning. Neural Comput.

Appl. 2019, 32, 11967–11997. [CrossRef]
45. Li, J.; Yang, Y.H.; Lei, H.; Wang, G.G. Solving Logistics Distribution Center Location with Improved Cuckoo Search Algorithm.

Int. J. Comput. Intell. Syst. 2020, 14, 676–692. [CrossRef]
46. Feng, Y.; Wang, G.G.; Dong, J.; Wang, L. Opposition-based learning monarch butterfly optimization with Gaussian perturbation

for large-scale 0-1 knapsack problem. Comput. Electr. Eng. 2018, 67, 454–468. [CrossRef]
47. Li, W.; Wang, G.G. Elephant herding optimization using dynamic topology and biogeography-based optimization based on

learning for numerical optimization. Eng. Comput. 2021, 1–29. [CrossRef]
48. Wiering, M.; Van Otterlo, M. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 51.
49. Oliehoek, F.A.; Spaan, M.T.; Vlassis, N. Optimal and approximate Q-value functions for decentralized POMDPs. J. Artif. Intell. Res.

2008, 32, 289–353. [CrossRef]
50. Bernstein, D.S.; Givan, R.; Immerman, N.; Zilberstein, S. The complexity of decentralized control of Markov decision processes.

Math. Oper. Res. 2002, 27, 819–840. [CrossRef]
51. Dibangoye, J.S.; Amato, C.; Buffet, O.; Charpillet, F. Optimally solving Dec-POMDPs as continuous-state MDPs. J. Artif. Intell. Res.

2016, 55, 443–497. [CrossRef]
52. Smola, A.; Gretton, A.; Song, L.; Schölkopf, B. A Hilbert space embedding for distributions. In Proceedings of the International

Conference on Algorithmic Learning Theory, Sendai, Japan, 1–4 October 2007; pp. 13–31.
53. Zhang, L.; Ding, G.; Wu, Q.; Zou, Y.; Han, Z.; Wang, J. Byzantine attack and defense in cognitive radio networks: A survey.

IEEE Commun. Surv. Tutor. 2015, 17, 1342–1363. [CrossRef]
54. Urkowitz, H. Energy detection of unknown deterministic signals. Proc. IEEE 1967, 55, 523–531. [CrossRef]
55. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area

Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE
Computer Society: 2016; pp. 1–3534. Available online: https://standards.ieee.org/standard/802_11-2016.html (accessed on
20 April 2021).

56. Demirkol, I.; Ersoy, C.; Alagoz, F. MAC protocols for wireless sensor networks: A survey. IEEE Commun. Mag. 2006, 44, 115–121.
[CrossRef]

57. Yadav, R.; Varma, S.; Malaviya, N. A survey of MAC protocols for wireless sensor networks. UbiCC J. 2009, 4, 827–833.
58. Parras, J.; Zazo, S. Wireless Networks under a Backoff Attack: A Game Theoretical Perspective. Sensors 2018, 18, 404. [CrossRef]
59. Anderson, T.W. On the distribution of the two-sample Cramer-von Mises criterion. Ann. Math. Stat. 1962, 33, 1148–1159.

[CrossRef]
60. Bianchi, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 2000,

18, 535–547. [CrossRef]
61. Parras, J.; Zazo, S. Using one class SVM to counter intelligent attacks against an SPRT defense mechanism. Ad Hoc Netw. 2019,

94, 101946. [CrossRef]
62. Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep reinforcement learning that matters. In Proceedings

of the AAAI Conference on Artificial Intelligence, 2018; New Orleans, LA, USA, 2–7 February 2018; pp. 3207–3214 .

http://dx.doi.org/10.1007/s10462-017-9559-1
http://dx.doi.org/10.3390/math8091415
http://dx.doi.org/10.1016/j.eswa.2020.114418
http://dx.doi.org/10.1007/s11831-021-09562-1
http://dx.doi.org/10.1016/j.neucom.2015.11.018
http://dx.doi.org/10.1007/s00521-019-04178-w
http://dx.doi.org/10.2991/ijcis.d.201216.002
http://dx.doi.org/10.1016/j.compeleceng.2017.12.014
http://dx.doi.org/10.1007/s00366-021-01293-y
http://dx.doi.org/10.1613/jair.2447
http://dx.doi.org/10.1287/moor.27.4.819.297
http://dx.doi.org/10.1613/jair.4623
http://dx.doi.org/10.1109/COMST.2015.2422735
http://dx.doi.org/10.1109/PROC.1967.5573
https://standards.ieee.org/standard/802_11-2016.html
http://dx.doi.org/10.1109/MCOM.2006.1632658
http://dx.doi.org/10.3390/s18020404
http://dx.doi.org/10.1214/aoms/1177704477
http://dx.doi.org/10.1109/49.840210
http://dx.doi.org/10.1016/j.adhoc.2019.101946

Sensors 2021, 21, 4060 20 of 20

63. Zhu, F.; Seo, S.W. Enhanced robust cooperative spectrum sensing in cognitive radio. J. Commun. Netw. 2009, 11, 122–133.
[CrossRef]

64. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1126–1135.

65. Jamal, M.A.; Qi, G.J. Task agnostic meta-learning for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11719–11727.

66. Payal, A.; Rai, C.S.; Reddy, B.R. Analysis of some feedforward artificial neural network training algorithms for developing
localization framework in wireless sensor networks. Wirel. Pers. Commun. 2015, 82, 2519–2536. [CrossRef]

67. Hernandez-Leal, P.; Kaisers, M.; Baarslag, T.; de Cote, E.M. A Survey of Learning in Multiagent Environments: Dealing with
Non-Stationarity. arXiv 2017, arXiv:1707.09183.

68. Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges,
solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JCN.2009.6391387
http://dx.doi.org/10.1007/s11277-015-2362-x
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://www.ncbi.nlm.nih.gov/pubmed/32203045

	Introduction
	Background
	Deep Reinforcement Learning
	Partially Observable Markov Decision Processes
	The Swarm Model

	Defense Systems
	Spectrum Sensing Data Falsification Attack
	Backoff Attack

	Deep Reinforcement Learning Attacker Architecture
	Results
	Baselines
	Spectrum Sensing Data Falsification Attack
	Backoff Attack
	Results

	Conclusions
	References

