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A B S T R A C T

Discounted repeated games are currently being used to model the conflicts that arise between the nodes in a
wireless network, such as distributed resource allocation, interference management or defending the network
against attacks. In current literature, it is frequent that authors devise a specific strategy that performs well
only for their concrete problem, thus, it would be desirable to have a generic algorithm that allows learning
strategies for such games. However, current learning algorithms focus on average payoff repeated games, and
we show analytically that there are important differences that prevent us from using such algorithms for
discounted repeated games. In this work, we aim to fill this gap and we propose LEWIS, a lightweight, online
learning algorithm specifically designed for these games, that deals with imperfect and incomplete information
and is able to return a good payoff. We test LEWIS on two settings based on current literature problems to
show that it has a good performance, hence, being a promising method to learn how to play a discounted
repeated game in wireless networks.
. Introduction

Multiagent learning is a field in which several agents or players try
o learn how to act optimally according to a certain reward function
efined for each player that is coupled to what the rest of the players
o. This model has a lot of interest in the field of networking, as each
etwork node makes decisions that affect the rest of the nodes, such
s whether to drop a packet or the communication channel used to
ransmit. A frequent mathematical foundation for this problem is game
heory (Shoham et al., 2007), the branch of mathematics oriented to
tudy the conflicts between different players that interact with possibly
ifferent targets each. Although multiagent learning can be studied
sing alternative tools (Stone, 2007), it is frequent to use games to
odel networks conflicts, as shown in Roy et al. (2010), Charilas

nd Panagopoulos (2010), Hoang et al. (2015), Moura and Hutchison
2018) and the references therein. This is due to the fact that game
heory is a mature field with many important works covering different
spects of the theory (Fudenberg and Tirole, 1991; Basar and Olsder,
999; Mailath and Samuelson, 2006; Mertens et al., 2015) that facilitate
ts applications on networking.

However, the use of game theory presents some important caveats.
irst, the most extended solution concept used in game theory, the
ash equilibrium, is computationally costly to obtain Daskalakis et al.

2009): this problem can be alleviated by using other solution con-
epts (Gilboa and Zemel, 1989). Second, in real environments a player
ay not know the objectives of the other players: this situation is
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E-mail address: j.parras@upm.es (J. Parras).

known as incomplete information (Fudenberg and Tirole, 1991). Note
that this may be the case in many network settings, as there might
be nodes with different objectives that cause the game to range from
extreme competition to extreme cooperation. And third, a player may
not observe perfectly what other players do: this situation is known
as imperfect information. These three problems arise frequently in
wireless network environments, where the computational capabilities
of each node may be constrained by its hardware and battery, where
there might be malicious nodes in the network and where each node
cannot possibly know what other players do. Motivated by this, we
propose approaching the problem in an online learning fashion, where
each player chooses what to do trying to maximize its own benefit.

In this article, we focus on repeated games (RGs), where a certain
interaction among players is repeated a number of times, called stages.
In each of these stages, the interests of the players are fixed, and
hence, their rewards do not change along the game. RGs have been
used to model a wide range of phenomena, such as macroeconomic
policy (Alesina, 1987), supply chain interactions (Bao et al., 2020), lane
changing in a freeway (Kang and Rakha, 2020) or optimal routing (La
and Anantharam, 2002), to mention some.

Specifically, RGs are a very adequate tool to represent network
interactions, as nodes in a network interact many times with a fixed
target: as shown in Hoang et al. (2015), there are many network
conflicts which have been modeled by making use of RGs, such as
distributed resource allocation (Semasinghe and Hossain, 2016), in-
terference management (Monsef and Saniie, 2015) or defense against
ttps://doi.org/10.1016/j.engappai.2021.104520
eceived 9 February 2021; Received in revised form 23 September 2021; Accepted
vailable online 29 October 2021
952-1976/© 2021 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by/4.0/).
17 October 2021

s article under the CC BY license

https://doi.org/10.1016/j.engappai.2021.104520
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104520&domain=pdf
mailto:j.parras@upm.es
https://doi.org/10.1016/j.engappai.2021.104520
http://creativecommons.org/licenses/by/4.0/


J. Parras, P.A. Apellániz and S. Zazo Engineering Applications of Artificial Intelligence 107 (2022) 104520

𝑟
e

D
a
c
a
i

s
−

h
m
c
t
2
(
c

d

𝑈

w
(

attacks (Parras and Zazo, 2019). We can broadly classify RGs depending
on how the total reward received by each agent (that we denote by
payoff, preserving reward for the outcome received by each player
at each stage) is obtained: we can average the rewards received in
each stage (average payoff) or use a discount factor to weight the sum
(discounted payoff). In network settings, discounted payoff schemes
are more used (Hoang et al., 2015) due to being more realistic: the
discount factor reflects the balance between present and future rewards
and also, can be used as a measure on the uncertainty in the length
of the game, whereas average payoff scheme assumes that the game
duration is known. This might not be a realistic assumption in wireless
networks (Konorski, 2006).

In the current literature in RGs applied to wireless networks, it is
frequent that each work proposes a game model (i.e., the rewards for
each player) and then proposes a certain algorithm that allows the play-
ers to obtain an equilibrium strategy (see, for instance, Qu et al., 2012;
Semasinghe and Hossain, 2016; Monsef and Saniie, 2015 or Jaramillo
and Srikant, 2007, to mention some). This has the advantage of finding
a good strategy for that game, but that may not be applied to other
games, even if similar.

We address all these issues by proposing a novel algorithm that can
be used to obtain good payoffs in discounted RGs. Even though this area
of research is intense (Hernandez-Leal et al., 2017a), most algorithms
are valid only for average payoff RGs, but the difference introduced by
the discount factor in the learning process cannot be skipped. As we
show in this work, the difference between both payoff schemes acutes
when the discount factor is low, i.e., is not close to 1. This has a strong
impact on applications where low discount factors may be used, as in
communication networks (Le Treust and Lasaulce, 2010; Xiao et al.,
2012; Niyato and Hossain, 2008). Thus, our main contributions in this
work are:

• We provide a detailed theoretical analysis of two important differ-
ences that arise between discounted and average payoff schemes
that impact learning a strategy for an RG. As we have mentioned,
discounted RGs are important in the networking field, so this is a
significant gap.

• We propose a generic algorithm, that we call LEWIS (LEarning
WIth Security) that is designed to learn a strategy that provides
a good payoff in a discounted RG. It only requires knowing the
discount factor and the rewards of the player (but not the rewards
of the rest), and it is able to select actions in such a way that it is
able to obtain good payoffs both in competition and cooperation
situations. Its flexibility allows it to be used in many different
problems, and it is computationally simple, which means that can
be used in real wireless network deployments.

The rest of the article goes as follows. Section 2 introduces the
mathematical background required for this work. Then, Section 3 an-
alyzes theoretically two important differences between discounted and
average payoff games, that have an impact on the learning process.
Then, Section 4 introduces our own algorithm, specifically designed
to learn in an online fashion and it is specifically designed for usual
settings in wireless networks. We then check the performance of our
algorithm using a distributed power control problem in Section 5
and a WBAN interference problem in Section 6, both of them taken
from literature, where we compare our method to the specific strategy
designed for each of these situations. Finally, we draw some conclusions
and present some future work lines in Section 7.

2. Background

Let us introduce key concepts of Game Theory that will be used in

this work. i

2

2.1. Discounted payoff repeated games

We define a static game as follows (Basar and Olsder, 1999):

Definition 1 (Static Game). A static game 𝐺 is a triple ⟨𝑁𝑝, 𝐴, 𝑟⟩, where:

• 𝑁𝑝 is the number of players, numbered as 1,… , 𝑁𝑝.
• 𝐴 is the set of actions available to all players. The pure actions

available to player 𝑖 are denoted by 𝑎𝑖, with 𝑎𝑖 ∈ 𝐴𝑖, being 𝐴𝑖 the
set of actions available to player 𝑖. 𝐴 is defined as 𝐴 ≡

∏

𝑖 𝐴𝑖. A
mixed action is a distribution probability over actions.

• 𝑟 is a function that gives the game rewards as:

𝑟 ∶
∏

𝑖
𝐴𝑖 → R𝑁𝑝 .

We consider only discrete sets of actions (i.e., 𝐴𝑖 are finite sets).
If there are 𝑁𝑝 = 2 players, then 𝑟𝑖 can be expressed using a matrix
𝑅𝑖, whose dimensions are the number of actions of each player. A
zero-sum game is a game in which the sum of the rewards of all
players equals zero: ∑

𝑖 𝑟𝑖(𝑎) = 0,∀𝑎 ∈ 𝐴. This means that the gains
of some players are the loses of the others, and hence, zero-sum games
model situations of extreme competition among players. The opposite
situation happens when all players share the same rewards: 𝑟𝑖(𝑎) =
𝑗 (𝑎),∀𝑖, 𝑗 ∈ 𝑁𝑝,∀𝑎 ∈ 𝐴. General sum games is the class of games that
ncompasses all possible reward functions.

Let us now define RGs:

efinition 2. A Repeated Game (RG) is built using a static game,
lso called stage game, which is played repeatedly over 𝑇 periods. We
onsider RGs of infinite horizon, where 𝑇 = +∞. The main elements in
n RG are the following, where superscript indicates time and subscript
ndicates the players:

1. The set of histories ℋ 𝑡 ≡ 𝐴𝑡. A history ℎ𝑡 is a list of actions
played in periods [0,… , 𝑡−1]. In other words, a history contains
the past actions.

2. A strategy for player 𝑖 is a mapping from the set of all possible
histories into the set of actions: 𝜎𝑖 ∶ ℋ → 𝐴𝑖. We denote by 𝜎
the strategy of all players.

3. The discounted payoff to player 𝑖 is obtained with the infinite
sequence of rewards (𝑟0𝑖 , 𝑟

1
𝑖 ,…) as:

𝑉𝑖(𝜎) = (1 − 𝛿)
∞
∑

𝑡=0
𝛿𝑡𝑟𝑡𝑖(𝑎

𝑡(𝜎)), (1)

where 𝛿 ∈ (0, 1) is the discount factor.

Note that 𝑎𝑡(𝜎) denotes that action 𝑎𝑡 = (𝑎𝑖, 𝑎−𝑖) is chosen following
trategy 𝜎 = (𝜎𝑖, 𝜎−𝑖), where the subscript 𝑖 refers to the player and
𝑖 refers to all players except player 𝑖. Also, we use 𝑟𝑡𝑖 to denote

rewards in the stage game, and 𝑉𝑖 denotes the total discounted RG
payoff. Note that if we considered mixed actions, we would have to
take expectations in (1).

It is important to remark the role of the discount factor 𝛿. It denotes
ow much the future rewards are valued, and hence, can be used as a
easure of the player patience (Mailath and Samuelson, 2006). But 𝛿

an also be used when the temporal horizon is uncertain: in this case,
he game may end at any stage with probability 1 − 𝛿 (Hoang et al.,
015), which means that the expected number of stages of the game is
1 − 𝛿)−1. Note that if 𝛿 = 0, the expected number of stages is 1, as it
oincides with the static case.

We can also define average payoff RGs, whose main difference with
iscounted RGs is that the total payoff now is as:

𝑖(𝜎) = lim
𝑇→∞

1
𝑇

∞
∑

𝑡=0
𝑟𝑖(𝑎𝑡(𝜎)), (2)

here we use 𝑈𝑖 for the average payoff and 𝑉𝑖 for the discounted payoff
1). Note that the average payoff, intuitively, corresponds to the case
n which 𝛿 = 1, as it assigns the same importance to all rewards.
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2.2. Equilibria concepts

In game theory, the solution to a game is known as equilibrium.
There is not a unique equilibrium concept, but many (Mailath and
Samuelson, 2006; Fudenberg and Tirole, 1991). In this Section, we
work using the discounted payoff only, although equivalent concepts
have been developed also for the average payoff.

The best known equilibrium concept is the Nash equilibrium (NE).
When all players follow an NE strategy, no player can obtain a better
payoff by a unilateral deviation. Mathematically,

𝑉𝑖(𝜎𝑖,𝑁𝐸 , 𝜎−𝑖) ≥ 𝑉𝑖(𝜎𝑖, 𝜎−𝑖), ∀𝜎𝑖, ∀𝑖 ∈ 𝑁𝑝.

A key result is that any finite static game has at least one possibly
ixed NE (Nash, 1951). It can be proved that the set of NEs in an
G includes the set of NEs of the stage game (Mailath and Samuelson,
006). But an RG may have additional NE: this result is captured by the
olk Theorems (Mailath and Samuelson, 2006; Fudenberg and Tirole,
991). Roughly speaking, the Folk Theorem states that in a repeated
ame, for a 𝛿 value sufficiently close to 1, better payoffs than the
tage game NE payoff could be achieved. Note that the set of valid
Es in an RG depends on the discount factor value. There are several
ommon strategies that take advantage of the Folk theorem, such as
ash reversion, tit-for-tat, grim or forgiving strategies (Mailath and
amuelson, 2006; Hoang et al., 2015). For instance, the grim strategy
onsists on cooperating (i.e., using a strategy that benefits all players),
nd in case that any player defects, a punishment strategy is followed
orever.

Another frequent strategy is the minmax strategy (MS): the player
inds a strategy such that it maximizes the worst reward that she could
btain:

𝑖,𝑀𝑆 = argmax
𝜎𝑖

min
𝜎−𝑖

𝑉𝑖(𝜎𝑖, 𝜎−𝑖).

The minmax strategy is the NE in zero-sum games: note that the
inmax concept implicitly assumes that the other players are extreme

ompetitors. For two players, two action games, the MS can be obtained
sing a linear program which depends only on the payoffs of one
layer (Aumann and Hart, 1992, Ch. 20).

However, both the MS and the NE have disadvantages. The MS,
lthough simpler to compute, may yield very poor payoffs if the game
s not of extreme competition, which is frequent in network settings.
n the other hand, the NE may be computationally complex to obtain
nd requires knowing the reward functions of all players. A different
pproach consists on directly choosing strategies that provide a high
ayoff, regardless of whether they are equilibria or not. This is similar
o no-regret strategies (Cesa-Bianchi and Lugosi, 2006; Zhou et al.,
016), as these strategies aim to provide a good payoff in terms of no-
egret (i.e., a player does as good as possible), and we choose to use
his approach in the algorithm we propose.

. Discounted vs average payoffs

Before introducing our algorithm, we proceed in this Section to
tudy two important effects that have an impact on learning schemes
nd that arise due to the discount factor, thus they only affect the
iscounted payoff scheme. For the sake of mathematical tractability,
e consider in Sections 3.1 and 3.2 that the players use a fixed
ixed strategy 𝜎. That is, 𝜎𝑖 is a fixed probability distributions over
𝑖 that does not change with time (for instance, it could be an NE).
s a consequence, the sequence of actions 𝑎0𝑖 , 𝑎

1
𝑖 ,… , 𝑎𝑡𝑖 and rewards

0
𝑖 , 𝑟

1
𝑖 ,… , 𝑟𝑡𝑖 for each player 𝑖 is composed by independent and identi-

ally distributed random variables for each stage. Note also that the
ctions are independent among players, as each player samples their
ction sequence using their own 𝜎 .
𝑖 k

3

.1. Time to achieve a certain payoff

We have noted that the main difference between the average pay-
ff 𝑈𝑖 and the discounted payoff 𝑉𝑖, for the same rewards sequence
0
𝑖 , 𝑟

1
𝑖 , 𝑟

2
𝑖 ..., is that the discounted payoff is a weighted mean, with

eights (1 − 𝛿), (1 − 𝛿)𝛿, (1 − 𝛿)𝛿2,…. Since the weights are decreasing,
he first difference between average and discounted payoff is that the
iscounted payoff scheme emphasizes the first several elements of the
ayoff sequence. Moreover, this effect depends on 𝛿. Note that since we
onsider that player 𝑖 uses a fixed strategy 𝜎𝑖, then E[𝑟𝑡𝑖], the expected
eward for player 𝑖, is constant. Let us start by defining the metric 𝑡𝑀 :

efinition 3. We define 𝑡𝑀 ,𝑀 ∈ (0, 100) as the stage 𝑡 of the repeated
ame in which the 𝑀% of the expected discounted payoff of player 𝑖
as already been assigned in the discounted payoff case if player 𝑖 uses
fixed strategy 𝜎𝑖, that is,

𝑀 =

{

min 𝑡
|

|

|

|

|

|

E

[

(1 − 𝛿)
𝑡

∑

𝑘=0
𝛿𝑘𝑟𝑘𝑖

]

≥ 𝑀
100

E
[

𝑉𝑖
]

}

. (3)

This definition of 𝑡𝑀 leads to the following:

Theorem 1. In a discounted, repeated game with infinite time horizon,
with 𝛿 ∈ (0, 1), if a fixed strategy 𝜎 is played in all stages, we can obtain
𝑡𝑀 as

𝑡𝑀 =
⎡

⎢

⎢

⎢

⎢

log
(

1 − 𝑀
100

)

log(𝛿)
− 1

⎤

⎥

⎥

⎥

⎥

, (4)

where ⌈𝑥⌉ denotes that 𝑥 is rounded up to the next integer

Proof. The problem we have to solve, using (3) and the definition of
𝑉𝑖 (1), is to obtain the minimum 𝑡𝑀 that satisfies

E
⎡

⎢

⎢

⎣

(1 − 𝛿)
𝑡𝑀
∑

𝑘=0
𝛿𝑘𝑟𝑘𝑖

⎤

⎥

⎥

⎦

≥ 𝑀
100

E

[

(1 − 𝛿)
∞
∑

𝑘=0
𝛿𝑘𝑟𝑘𝑖

]

,

which becomes

(1 − 𝛿)
𝑡𝑀
∑

𝑘=0
𝛿𝑘E

[

𝑟𝑘𝑖
]

≥ 𝑀
100

(1 − 𝛿)
∞
∑

𝑘=0
𝛿𝑘E

[

𝑟𝑘𝑖
]

,

and since 𝜎𝑖 is fixed, E
[

𝑟𝑘𝑖
]

is constant, and hence,

(1 − 𝛿)
𝑡𝑀
∑

𝑘=0
𝛿𝑘 ≥ 𝑀

100
(1 − 𝛿)

∞
∑

𝑘=0
𝛿𝑘. (5)

Now, we can use the following expression for geometric sums
𝑡1
∑

𝑡=𝑡0

𝛿𝑡 = 𝛿𝑡0 − 𝛿𝑡1+1

1 − 𝛿
, 𝛿 ≠ 1, (6)

to manipulate (5) and obtain

1 − 𝛿𝑡
𝑀+1 ≥ 𝑀

100
,

and the minimum 𝑡𝑀 that solves this expression is (4). □

Note that 𝑡𝑀 (4) can be used to study the part of the payoff that has
been assigned on time stage 𝑡𝑀 , which depends on the 𝛿 value as plot
in Fig. 1 for 𝑀 = 99. Small values of 𝛿 mean that the major part of the
payoff is assigned in a short number of stages, whereas 𝛿 values close to
1 take more time stages to assign the payoff. Note that under average
payoff, 𝑡𝑀 = ∞ in the limit for 𝑀 > 0. The impact that this has on

learning scheme is that under average payoff, the learning algorithm
ay converge in a long time stage 𝑡 and it would not affect significantly

he payoff. However, under a discounted payoff, the learning speed is
ey: a learning algorithm that converges slowly will yield poor payoffs.
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Fig. 1. Evolution of 𝑡99 as a function of 𝛿 values using (4). The horizontal axis
represents the 𝛿 values, and in the vertical axis, we plot 𝑡99, the number of stages
needed to assign the 99% of the discounted payoff. Note that for low values of 𝛿 most
of the payoff is assigned in a few stages. Also, note that we may use (4) in order to
obtain the discount factor in a game where 𝑡𝑀 is a given parameter.

3.2. Variance

A second difference between discounted and average payoffs is the
variance of the total payoff when a mixed strategy is used: the variance
depends on the discount factor, as the next Theorem shows.

Theorem 2. In a discounted, repeated game with time horizon 𝑇 and
𝛿 ∈ (0, 1), if a fixed mixed strategy 𝜎 is played in all stages, the following
expressions hold for the discounted payoff case:

E
[

𝑉𝑖
]

= (1 − 𝛿𝑇 )E
[

𝑟𝑡𝑖
]

𝑉 𝑎𝑟
[

𝑉𝑖
]

= 1 − 𝛿
1 + 𝛿

(

1 − 𝛿2𝑇
)

𝑉 𝑎𝑟
[

𝑟𝑡𝑖
], (7)

nd for the average payoff case:

E
[

𝑈𝑖
]

= E
[

𝑟𝑡𝑖
]

𝑉 𝑎𝑟
[

𝑈𝑖
]

= 1
𝑇
𝑉 𝑎𝑟

[

𝑟𝑡𝑖
]
, (8)

where E
[

𝑟𝑡𝑖
]

is the expected reward of player 𝑖 and 𝑉 𝑎𝑟
[

𝑟𝑡𝑖
]

the variance of
the reward of player 𝑖.

Proof. Since each player follows a mixed fixed strategy, the reward
𝑟𝑡𝑖 of player 𝑖 follows a distribution probability which depends on
the product of probabilities for each player for each action vector 𝑎,
because each player chooses her mixed action independently of the rest
following her strategy. Thus, if we define 𝑋𝑡,𝑖 = (1−𝛿)𝛿𝑡𝑟𝑡𝑖 as the random
variable that models the reward that player 𝑖 receives in stage 𝑡, we
obtain:

E
[

𝑋𝑡,𝑖
]

= E
[

(1 − 𝛿)𝛿𝑡𝑟𝑡𝑖
]

= (1 − 𝛿)𝛿𝑡E
[

𝑟𝑡𝑖
]

𝑉 𝑎𝑟
[

𝑋𝑡,𝑖
]

= 𝑉 𝑎𝑟
[

(1 − 𝛿)𝛿𝑡𝑟𝑡𝑖
]

= (1 − 𝛿)2𝛿2𝑡𝑉 𝑎𝑟
[

𝑟𝑡𝑖
]. (9)

The expected discounted reward that a player obtains after 𝑇 stages
is

E
[

𝑉𝑖
]

= E

[𝑇−1
∑

𝑡=0
𝑋𝑡,𝑖

]

=
𝑇−1
∑

𝑡=0
(1 − 𝛿)𝛿𝑡E

[

𝑟𝑡𝑖
]

, (10)

and thus, using (6), (9) and (10), and taking into account that the
variance of the sum of independent random variables is the sum of the
variances and that E

[

𝑟𝑡𝑖
]

is constant, we obtain the following results for
the discounted payoff (1):

E𝑡
[

𝑉𝑖
]

= E

[𝑇−1
∑

𝑡=0
(1 − 𝛿)𝛿𝑡𝑟𝑡𝑖

]

= (1 − 𝛿𝑇 )E
[

𝑟𝑡𝑖
]

𝑉 𝑎𝑟
[

𝑉𝑖
]

= 𝑉 𝑎𝑟

[𝑇−1
∑

𝑡=0
(1 − 𝛿)𝛿𝑡𝑟𝑡𝑖

]

=
𝑇−1
∑

𝑉 𝑎𝑟
[

(1 − 𝛿)𝛿𝑡𝑟𝑡𝑖
]

= 1 − 𝛿 (

1 − 𝛿2𝑇
)

𝑉 𝑎𝑟
[

𝑟𝑡𝑖
]

.

𝑡=0 1 + 𝛿

4

Fig. 2. Payoff matrices for MP. Player 1 is the row player and player 2 is the column
player. In the matrix, the payoff entries for each pair of actions 𝑎 = (𝑎1 , 𝑎2) are
𝑟1(𝑎), 𝑟2(𝑎)).

And solving for the average payoff case (2), we obtain:

E
[

𝑈𝑖
]

= E

[

1
𝑇

𝑇−1
∑

𝑡=0
𝑟𝑡𝑖

]

= E
[

𝑟𝑡𝑖
]

𝑉 𝑎𝑟
[

𝑈𝑖
]

= 𝑉 𝑎𝑟

[

1
𝑇

𝑇−1
∑

𝑡=0
𝑟𝑡𝑖

]

= 1
𝑇 2

𝑇−1
∑

𝑡=0
𝑉 𝑎𝑟

[

𝑟𝑡𝑖
]

= 1
𝑇
𝑉 𝑎𝑟

[

𝑟𝑡𝑖
]

. □

Observe how in the average payoff case (8), the mean value of
the total payoff coincides with the mean value of the reward, and the
variance of the total payoff tends to zero with sufficiently long time
stages. However, in the discounted payoff case (7), the mean value
and variance of the total payoff depend on the 𝛿 value. For sufficiently
large values of 𝑇 such that 𝛿𝑇 → 0, the mean value of the total payoff
coincides with the mean value of the reward, but the variance still
depends on the 𝛿 value and only tends to 0 if 𝛿 → 1. In other words,
the discount factor does also have an impact on the mean and variance
of the total payoff. It is possible to understand this effect intuitively by
realizing that the discount factor gives a higher weight to the firsts 𝑟𝑡𝑖
values to obtain 𝑉𝑖: with a discount factor, say, 𝛿 = 0.1, 𝑟0𝑖 has a weight
(1 − 𝛿)𝛿𝑡 = 0.9, 𝑟1𝑖 has a weight 0.09 and 𝑟2𝑖 has a weight 0.009; that is,
the first three 𝑟𝑡𝑖 values concentrate the 0.999% of the total 𝑉𝑖. Hence,
low 𝛿 values cause large variances because a small amount of samples
dominates the payoff.

Thus, the variance dependence on the discount factor may also
affect a learning procedure. First, because a larger variance means that
a player needs to collect many rewards in order to evaluate whether a
strategy being learned is good or not in terms of payoff. And second,
because a player may obtain a poor payoff in a repeated game even if
the strategy being used is an equilibrium of the game, simply due to
the large variance that appears when using a low discount factor.

3.3. Illustration using Matching Pennies

Let us illustrate the effects described in Sections 3.1 and 3.2 by
using a known game as Matching-Pennies (MP). MP is a zero-sum game
with 𝑁𝑝 = 2 players, where each player has 2 possible actions: the first
player receives a positive reward if both players choose the same action,
and a negative reward if both players choose different actions, while
the second player receives a positive reward when both players choose
different actions. The payoff matrix of the game is in Fig. 2.

The NE of a two-player, two-actions zero-sum game can be obtained
using a linear program which depends only on the payoffs of one
player (Aumann and Hart, 1992, Ch. 20). In the case of MP, there is
a single mixed NE: 𝑎1 = 𝑎2 = (1∕2, 1∕2), which yields each player
an expected reward 𝑟1 = 𝑟2 = 0. That is, if both players select their
action with probability 1∕2, they will obtain an expected reward of
0. However, let us assume that player 1 does play 𝑎1 = 1∕2, while
layer 2 does not know the equilibrium 𝑎2. Player 2 may use a learning
cheme in order to obtain 𝑎2 (see Section 4.4 for references to current
lgorithms). However, Theorem 1 shows that by the time the learning
lgorithm has converged to 𝑎2 = 1∕2, most of the payoff may have

already been assigned. By using (4), we reach the results contained in
Table 1: observe that if 𝛿 ≤ 0.5, the 99% of the total payoff is assigned
in the first six stages at most, the 95% in the first four stages and the
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Table 1
Evolution of 𝑡99, 𝑡95 and 𝑡90 for different 𝛿 values, where (4) was used to obtain the
values of 𝑡𝑀 .
𝛿 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑡99 1 2 3 5 6 9 12 20 43
𝑡95 1 1 2 3 4 5 8 13 28
𝑡90 1 1 1 2 3 4 6 10 21

Fig. 3. Results of the standard deviation comparison simulation using MP. The
horizontal axis represents the 𝛿 values, and in the vertical axis, we plot the standard
deviation of the payoff. Orange line is for the theoretical average payoff case, using
(8). Blue line is for the theoretical discounted payoff case, using (7). Red lines are
the empirical standard deviation obtained under simulation. Note how the standard
deviation depends on 𝛿 under the discounted payoff case. Also, note that the average
payoff case gives in general lower deviations, except when 𝛿 → 1.

90% in the first three. Thus, any learning algorithm that we may use
must be extremely fast in order to ensure that the agent obtains a good
payoff if the discount factor is low, otherwise, by the time the player
has obtained a good strategy, the amount of payoff to be assigned may
be negligible, and hence, the player may obtain a poor payoff.

Also, the variance of the payoffs depend on the discount factor, as
Theorem 2 states. If both players know the NE and play it, E[𝑟𝑡𝑖] = 0
nd 𝑉 𝑎𝑟[𝑟𝑡𝑖] = 1. We simulated 100 different repeated games with
= 500 stages using 101 equispaced values of 𝛿 ∈ [0, 1] and obtained

he empirical standard deviation of the payoff for each 𝛿 value. Also, we
btained the theoretical standard deviation value using (7). For com-
arison purposes, we added the theoretical standard deviation under
he average payoff scheme using (8). The results can be observed in
ig. 3, where we can notice that the standard deviation in the discount
ayoff scheme depends on the 𝛿 value and is larger than the standard
eviation under the average payoff scheme except when 𝛿 ≈ 1. Note
hat in MP, if the discount factor is low, the payoff obtained by each
layer may be far from the expected value of 0, as the variance is large.

. LEWIS algorithm

We have shown that discounted RGs are of interest to wireless
etworks, and also shown that any algorithm that pretends learning
ow to play them must be aware of the effects that arise due to
he discount factor. We proceed to describe a generic algorithm that
an be used to play in these situations, which we call LEWIS, as an
cronym of LEarning WIth Security. It is a distributed algorithm that
earns as players interact: each player first computes a security strategy,
hat provides a worst-case, possibly poor payoff, and then they try to
mprove that payoff if possible. Some LEWIS highlights are:

• LEWIS tries to improve the security payoff, thus, implicitly it
makes use of the Folk Theorem.

• LEWIS is designed for secure online learning in discounted setups,
taking into account the effects presented in Section 3.

• LEWIS can be used in games of incomplete information, as each
player needs not knowing the reward functions of the others, but
only knowing their own reward function.
 m

5

Fig. 4. LEWIS block diagram.

• LEWIS can be used in games of imperfect information, as each
player only needs to know its own actions and the reward that
receives at each stage.

Instead of relying on the concept of equilibria, LEWIS modifies its
strategy in an online fashion depending on the rewards received by the
player, and hence, it is similar in spirit to no-regret techniques. The
basic idea is playing a certain action 𝑎𝑡𝑖 if and only if (1) the expected
payoff by using 𝑎𝑡𝑖 is larger than a security payoff and (2) the worst
case payoff of using 𝑎𝑡𝑖 does not fall below a certain threshold. A block
diagram of LEWIS can be found in Fig. 4, which we now explain.

4.1. Action selection block

The first key component of LEWIS is the action selection block,
which returns a triple ⟨𝑎𝑡𝑖, 𝑟𝑖,𝑤, 𝑟𝑖,𝑒⟩ formed by a recommended action
𝑎𝑡𝑖, the worst reward that could be obtained by playing action 𝑎𝑡𝑖, 𝑟𝑖,𝑤,
and the expected reward of playing action 𝑎𝑡𝑖, 𝑟𝑖,𝑒. We propose selecting
actions based on the past rewards received by agent 𝑖. For each discrete
action 𝑎𝑖 ∈ 𝐴𝑖, we keep a measure of the reward that player 𝑖 has
obtained by playing this action in the past, 𝑟̂𝑡𝑖(𝑎𝑖). The index 𝑡 is used
because the estimation is updated in each stage 𝑡 as

𝑟̂𝑡𝑖(𝑎𝑖) =
{

(1 − 𝛼)𝑟̂𝑡−1𝑖 (𝑎𝑖) + 𝛼𝑟𝑡𝑖 if 𝑎𝑖 = 𝑎𝑡𝑖
𝑟̂𝑡−1𝑖 (𝑎𝑖) if 𝑎𝑖 ≠ 𝑎𝑡𝑖

, (11)

where 𝛼 ∈ [0, 1] is a parameter that controls how much weight we give
to the current reward. Note that (11) obtains an exponential weighted
average of the received payoffs, where the exponential decay is con-
trolled by 𝛼. Larger 𝛼 values provide a faster update, but also larger
variance. We initialize the estimation optimistically to facilitate explo-
ration (Stimpson et al., 2001), by setting 𝑟̂−1𝑖 (𝑎𝑖) = max𝑎−𝑖 𝑟𝑖(𝑎𝑖, 𝑎−𝑖), that
is, the estimation is initialized to the maximum reward value for each
action.

At each stage 𝑡, this block recommends the action with a larger
reward estimation, that is, 𝑎𝑡𝑖 = argmax𝑎𝑖 𝑟̂

𝑡−1
𝑖 (𝑎𝑖) and 𝑟𝑖,𝑒 = 𝑟̂𝑡−1𝑖 (𝑎𝑡𝑖). The

worst case reward is the minimum reward that player 𝑖 would obtain by
playing 𝑎𝑡𝑖, that is, 𝑟𝑖,𝑤 = min𝑎−𝑖 𝑟𝑖(𝑎

𝑡
𝑖, 𝑎−𝑖). LEWIS may decide to use 𝑎𝑡𝑖

r not, and then a reward 𝑟𝑡𝑖 would be received, which allows updating
𝑟̂𝑡𝑖(𝑎𝑖,𝑡) using (11) and the actual action chosen by LEWIS.

.2. Security condition

LEWIS also has a security property, as it guarantees a minimum
ayoff for the player by comparing a payoff estimation with a security
ayoff. Since each player knows only her own payoff, it is not possible
or her to compute the NE of the game and use this as a security payoff.
owever, the player could use a worst-case value as security value: the
inmax values, as the minmax payoff maximizes the worst reward that
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the player could obtain and hence, the MS can be used as a security
strategy to guarantee a payoff 𝑉𝑖,𝑀𝑆 at worst, regardless of what other
players do.

However, as mentioned, 𝑉𝑀𝑆 may yield a poor payoff, as it assumes
xtreme competition among players. As we want LEWIS to provide
ood payoffs when possible, there needs to be a compromise between
he security payoff and the ability to cooperate with other players. We
odel this compromise by using a parameter 𝜖 ≥ 0 to define 𝑉𝑖,𝑠, the

ecurity payoff for player 𝑖, as

𝑉𝑖,𝑠 = E
[

𝑉𝑖,𝑀𝑆 − 𝜖
]

= E

[

(1 − 𝛿)
∞
∑

𝑡=0
𝛿𝑡𝑟𝑖,𝑀𝑆

]

− 𝜖

= E
[

𝑟𝑖,𝑀𝑆
]

− 𝜖,

(12)

here use (1) and (6). Note that in (12), if 𝜖 = 0, player 𝑖 would always
se 𝜎𝑖,𝑀𝑆 in order to guarantee herself a security payoff equal to the
inmax payoff. However, if 𝜖 is a positive value, player 𝑖 could be
illing to use actions that do not follow 𝜎𝑖,𝑀𝑆 if the worst case payoff
rovided by these actions is larger than the security payoff, which now
s smaller than the MS payoff by 𝜖.

Thus, at each stage 𝑡, LEWIS first obtains a recommended action 𝑎𝑡𝑖
nd then it decides whether to play this recommended action or not. In
rder to make that decision, LEWIS obtains the worst predicted payoff
or 𝑎𝑡𝑖, 𝑉

𝑡
𝑖,𝑝(𝑎

𝑡
𝑖), as

𝑉 𝑡
𝑖,𝑝(𝑎

𝑡
𝑖) =E

[

(1 − 𝛿)

( 𝑡−1
∑

𝑘=0
𝛿𝑘𝑟𝑘𝑖 + 𝛿𝑡𝑟𝑖,𝑤 +

∞
∑

𝑘=𝑡+1
𝛿𝑘𝑟𝑖,𝑀𝑆

)]

=(1 − 𝛿)
𝑡−1
∑

𝑘=0
𝛿𝑘𝑟𝑘𝑖 + (1 − 𝛿)𝛿𝑡𝑟𝑖,𝑤 + 𝛿𝑡+1E

[

𝑟𝑖,𝑀𝑆
]

, (13)

where 𝑉 𝑡
𝑖,𝑝(𝑎

𝑡
𝑖) is the expected payoff that player 𝑖 would obtain if she

plays 𝑎𝑡𝑖 and obtains the worst possible reward for this action, 𝑟𝑖,𝑤, and
in the rest of the game, player 𝑖 follows its minmax strategy. Note
that this idea is similar to the one-shot deviation principle (Mailath
and Samuelson, 2006), widely used to find strategies that yield good
payoffs, which is what LEWIS tries to do. By using (12) and (13), we
define a secure action 𝑎𝑡𝑖 as follows:

Definition 4. In a discounted repeated game with infinite time
horizon, with 𝛿 ∈ (0, 1), and 𝑉𝑖,𝑠 and 𝑉 𝑡

𝑖,𝑝(𝑎
𝑡
𝑖) defined as in (12) and (13)

respectively, an action 𝑎𝑡𝑖 is secure if

𝑉 𝑡
𝑖,𝑝(𝑎

𝑡
𝑖) ≥ 𝑉𝑖,𝑠.

This condition means that the worst predicted payoff needs to be
greater than or equal to the security payoff. If that condition is not
satisfied, then, the action 𝑎𝑡𝑖 is not considered secure and LEWIS follows
the security strategy.

4.3. Algorithm overview

An overview of LEWIS is in Algorithm 1. As input, each player 𝑖
needs only her own payoff function 𝑟𝑖, the discount factor 𝛿 and the 𝜖
value that will be used to set the security payoff (note that each player
may use its own 𝛿 and 𝜖 value). At each stage 𝑡, player 𝑖 obtains 𝑎𝑡𝑖
and checks whether this action is secure or not using Definition 4. If
𝑎𝑡𝑖 is secure, then the player plays it, otherwise, it follows the security
strategy. After that, the reward is observed and the strategy block is
updated using (11).

Regarding computational complexity, note that LEWIS is fast and ef-
ficient. The more computationally complex part consists on computing
the minmax strategy, which can be done using linear programming (Au-
mann and Hart, 1992, Ch. 20). The action selection block update (11)
implies a constant complexity with the number of actions, as at each
time step, the reward for a single action is updated, and the security
condition from Definition 4 is a single comparison. Thus, LEWIS is fast
and efficient, and could be implemented in low resources devices.
 r

6

Algorithm 1 LEWIS algorithm for player 𝑖

Input: 𝛿, 𝑟𝑖, 𝜖, 𝛼
1: Obtain the minmax values: 𝑟𝑖,𝑀𝑆 and 𝜎𝑖,𝑀𝑆
2: for 𝑡 = 0, 1, 2, ... do
3: Obtain ⟨𝑎𝑡𝑖, 𝑟𝑖,𝑤, 𝑟𝑖,𝑒⟩
4: Obtain 𝑉 𝑡

𝑖,𝑝(𝑎
𝑡
𝑖) using (13)

5: if 𝑉 𝑡
𝑖,𝑝(𝑎

𝑡
𝑖) is secure using Definition 4 then

6: Play 𝑎𝑡𝑖
7: else
8: Play 𝑎𝑡𝑖 ∼ 𝜎𝑖,𝑀𝑆
9: Observe the actions and rewards
0: Update action selection block using (11)

A word is required regarding convergence. We give no guarantee
that LEWIS will converge to an equilibrium, as we only focus on
achieving a payoff as large as possible. Moreover, LEWIS provides no
guarantees of payoff other than the security payoff: its capacity to
improve this payoff depends on the kind of game and the value of 𝜖. In
ther words, LEWIS does not learn a strategy 𝜎, but rather, it decides
t each stage whether to play a recommended action or the minmax
ction, and this choice is done purely in terms of payoff. In RGs,
here might be many possible strategies that lead to different action
equences that provide similar payoffs (Nachbar and Zame, 1996). This
act is used by LEWIS by choosing only actions that provide the player
ith a certain payoff larger than the security payoff. Finally, note that

he lack of guarantees on the maximum payoff and the strategy is a
onsequence of working on incomplete information settings: if a player
nows the rewards of the others, they might use a different strategy as
ecurity strategy, although we only consider minmax strategies in this
ork.

Finally, we note that LEWIS does take into account that the first
tages have a larger impact on the payoff (Theorem 1), as all the
ecurity conditions take into account the discount factor. However, we
o not incorporate the dependence of the payoff with the variance
Theorem 2). This could be incorporated in LEWIS by making use
f a more complex security payoff that could take this variance into
ccount. We leave this for future work.

.4. Similar works

Even though there are many proposed algorithms for learning how
o play in an RG, these do not satisfactorily address the problems that
e have explained in Section 3. A recent survey notes more than 20
lgorithms specifically addressed to RGs (Hernandez-Leal et al., 2017a),
et most of them do not take into account the discount factor in the
earning process. Even though many learning algorithms based on Q-
earning use a discount factor in the algorithm updates, they end up
sing the average reward as total payoff. We have already noted that
he main difference between using average and discounted payoff is
hat under the average paradigm, all rewards equally contribute to the
otal payoff (i.e., all the rewards have the same weight on the total
ayoff), whereas under a discounted payoff, the first rewards have
larger weight on the total payoff (Theorem 1). As we have noted,

iscounted payoffs are dominant in network settings, but most of the
urrent learning algorithms are not designed to deal with discounted
ayoffs (Bowling, 2005; de Cote et al., 2006; Abdallah and Lesser,
008; Kaisers and Tuyls, 2010; Bloembergen et al., 2010; Hernandez-
eal et al., 2017b; Abdallah and Kaisers, 2016; Banerjee and Peng,
004; Powers et al., 2007; Conitzer and Sandholm, 2007; Crandall
nd Goodrich, 2011; Damer and Gini, 2017; Chakraborty and Stone,
014; Hernandez-Leal et al., 2014, 2017c) or (Wunder et al., 2012). An
xception is Peski (2014), which introduces an algorithm designed for

epeated games with discounted payoff, which however, is only valid
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t

t

when there is a sufficiently large discount factor, whereas LEWIS does
not have such limitation.

Some existing algorithms have ideas that may be used for learning
on discounted RGs. One possible idea is learning as fast as possible,
which is done by FAL-SG (Elidrisi et al., 2014), which applies to
stochastic games and does not study the effects of the discount factor.
Note that learning fast may mean learning in a few stages if the discount
factor is low, as most of the payoff may be assigned in the firsts
stages as shown in Fig. 1. Thus, a fast algorithm may be a solution
only if the discount factor is sufficiently large, but may not be a good
solution for very low discount factors. A different way to cope with
this problem could be using security conditions, which allow choosing
strategies in such a way that a minimum payoff is guaranteed, as LEWIS
does. Some algorithms that use this idea are GIGA-WoLF (Bowling,
2005), ReDVaLeR (Banerjee and Peng, 2004), M-Qubed (Crandall and
Goodrich, 2011) and RSRS (Damer and Gini, 2017). However, the
security in these algorithms is related to the average payoff concept,
and some of them also require observing the actions of the rest of
the players (as M-Qubed), whereas LEWIS does not need observing
them. A final possibility, used in Parras and Zazo (2020), consists
on having a phase prior to the game in which all players agree on
the strategy they are going to follow such that all of them receive a
satisfactory payoff, but this algorithm requires a first phase dedicated
to negotiation, whereas LEWIS learns in an online fashion.

5. Application to distributed power control

Let us now show how LEWIS can be applied to different situations
in wireless networks, studying its advantages and disadvantages. To
this purpose, we select two different problems, which are distributed
power control in this Section, and interference control in Section 6.
The first application that we present is distributed power allocation on
wireless networks. In this field, game theory is an approach that has
been proposed to deal with the conflicts that naturally arise between
the network agents involved, as can be seen for instance in Ma et al.
(2012), Shahid et al. (2014), Al-Imari et al. (2015) or Semasinghe
and Hossain (2016): note that a node transmitting with more power
maximizes its own throughput, but increases the interference to other
network nodes, and hence, a compromise should be reached so that
the total network throughput is optimized. In the remainder of this
Section, we apply LEWIS to a setting based on the distributed resource
allocation of power problem described in Semasinghe and Hossain
(2016) for a wireless network.

5.1. Setup description

Let us assume that we have 2 small cells with full duplex users and
two Base Stations (𝐵𝑆s), where for simplicity, we assume that each 𝐵𝑆
serves a single user (𝑈), thus, there are two 𝑈s. We index each 𝑈 and
its 𝐵𝑆 with 𝑘 = {1, 2}. We consider that there are two communication
channels: one for the uplink (UL, i.e., from 𝑈𝑘 to the 𝐵𝑆𝑘) and another
for the downlink (DL, i.e., from 𝐵𝑆𝑘 to 𝑈𝑘). Since all 𝐵𝑆s and 𝑈s
are close physically, they cause a non-negligible interference on the
communications of the rest of the network. In order to characterize the
quality of each communication link, we can use the signal to noise and
interference ratio (𝑆𝐼𝑁𝑅), which can be computed for the UL (i.e., at
each 𝐵𝑆) as follows:

𝑆𝐼𝑁𝑅𝑈𝐿
𝑘 =

𝑝𝑈𝐿
𝑘 𝑙𝐵𝑆𝑘 ,𝑈𝑘

𝑁0 + 𝑝𝑈𝐿
𝑗 𝑙𝐵𝑆𝑘 ,𝑈𝑗

+ 𝛾(𝑝𝐷𝐿
𝑘 + 𝑝𝐷𝐿

𝑗 𝑙𝐵𝑆𝑘 ,𝐵𝑆𝑗
)

(14)

where 𝑗 indexes the other 𝑈/𝐵𝑆 in the network (i.e., 𝑗 and 𝑘 index
he two 𝐵𝑆s/𝑈s in the network), 𝑝𝑈𝐿

𝑘 denotes the transmission power
of 𝑈𝑘, 𝑝𝐷𝐿

𝑘 is the transmission power of 𝐵𝑆𝑘, 𝑙𝑎,𝑏 denotes the signal
attenuation between the positions of the 𝑈s / 𝐵𝑆s 𝑎 and 𝑏, 𝑁0 is the
thermal noise level at the receiver (we assume the same 𝑁0 for all 𝐵𝑆s
and 𝑈s), and 𝛾 is a parameter that accounts for the attenuation between
7

Table 2
Parameters used in the distributed power control problem, where 𝑑𝑎,𝑏 is the distance
between 𝑎 and 𝑏.

Parameter 𝑁0 𝑝𝑈𝐿
𝑘 𝛾 𝑙𝑎,𝑏

Value 0.001 W 10 W 0.001 𝑑−4
𝑎,𝑏

the UL and DL communication channels (i.e., co-channel interference).
Equivalently, the 𝑆𝐼𝑁𝑅 for the DL at each 𝑈𝑘 is:

𝑆𝐼𝑁𝑅𝐷𝐿
𝑘 =

𝑝𝐷𝐿
𝑘 𝑙𝐵𝑆𝑘 ,𝑈𝑘

𝑁0 + 𝑝𝐷𝐿
𝑗 𝑙𝐵𝑆𝑗 ,𝑈𝑘

+ 𝛾(𝑝𝑈𝐿
𝑘 + 𝑝𝑈𝐿

𝑗 𝑙𝑈𝑘 ,𝑈𝑗
)

(15)

As in Semasinghe and Hossain (2016), we can define a game be-
ween both 𝐵𝑆s, where each 𝐵𝑆 must adjust its transmission power 𝑝𝐷𝐿

𝑘
in order to optimize the interference caused, as it affects to the quality
of the communication of the whole network. The authors in Semasinghe
and Hossain (2016) model this situation by using a discounted repeated
game whose stage game 𝐺 = ⟨𝑁𝑝, 𝐴, 𝑟⟩ (see Definition 1) is defined as
follows:

• 𝑁𝑝 = 2, as the players are the two 𝐵𝑆s, and thus, the 𝑈s transmit
using a fixed power. It could also make sense considering that
the 𝑈s can also modify their powers, and hence, the game would
become a four players game. Although LEWIS may deal with this
situation, which speaks of its flexibility, we follow the original
problem formulation in order to make a fair comparison with
their strategy, which we use as baseline

• The set of actions 𝐴𝑘 available to each player is a set of predefined
transmission power levels. We assume that both players have the
same action set, thus 𝐴1 = 𝐴2.

• The reward function for each player is:

𝑟𝑘(𝑎1, 𝑎2) = log(𝑆𝐼𝑁𝑅𝑈𝐿
𝑘 ) + log(𝑆𝐼𝑁𝑅𝐷𝐿

𝑘 ) (16)

where, according to (14) and (15), both 𝑆𝐼𝑁𝑅 terms depends on
𝑎1 and 𝑎2, i.e., the downlink transmission power of each 𝐵𝑆.

The authors in Semasinghe and Hossain (2016) show that the only
NE of the stage game consists on transmitting with the maximum power
available, which also means experiencing the maximum interference. In
order to alleviate this problem, they use a repeated discounted game
by making use of the Folk Theorem: there are better payoffs for both
players if they are patient enough, i.e., when 𝛿 is sufficiently close
to 1. To achieve these desirable payoffs, they propose using a Grim
strategy: all players compromise to transmit with a certain power level
that allows the SINR to be controlled. In case that any player deviates,
which could be detected by an increase in the interference level, then
all players switch to their NE strategy and transmit with their maximum
power indefinitely. This Grim strategy turns out to be cheat-proof, as
no player has any incentive to deviate, because its total payoff would
decrease. Finally, it is necessary to reach an agreement on the initial
transmission powers among all the players: the authors in Semasinghe
and Hossain (2016) propose using a distributed algorithm based on
perturbed Markov chains, in which each player tries different power
transmission levels until it is satisfied with the payoff obtained. This
algorithm is run during several iterations prior to the actual play of the
game, during the so-called learning phase.

5.2. Empirical results

We can use LEWIS as an alternative way to address the distributed
power control game. In order to test the performance of LEWIS, we use
the setup described in Section 5.1, with the parameters contained in
Table 2 and consider that the action space (i.e., transmission power
options) of each 𝐵𝑆 is 𝐴𝑘 = {5, 10, 15, 20, 25, 30} W. We place our
𝐵𝑆s and 𝑈s in the following (𝑥, 𝑦) plane points: (𝑥𝐵𝑆1

, 𝑦𝐵𝑆1
) = (10, 10),
(𝑥𝐵𝑆2
, 𝑦𝐵𝑆2

) = (0, 0), (𝑥𝑈1
, 𝑦𝑈1

) = (1, 8), (𝑥𝑈2
, 𝑦𝑈2

) = (5, 5). We use as
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Fig. 5. Payoffs obtained for different values of the discount factor 𝛿 in the distributed
ower control problem. The horizontal axis is 𝑉1, and the vertical axis 𝑉2. The small
lue dots are the possible payoffs provided by all combinations of 𝐴1 × 𝐴2. The red

point represents the NE payoff 𝑉𝑛,𝑘: note that there are better payoffs for both players,
i.e., points such that 𝑉𝑘 > 𝑉𝑛,𝑘 ,∀𝑘 = 1, 2. The green and cyan points have been obtained
with the baseline, without deviation (green) and with the player 2 deviating in the
second stage (cyan). The black square is the payoff obtained using LEWIS. Note how
LEWIS is capable to obtain better payoffs than the baseline, and the improvement grows
as 𝛿 increases.

baseline the algorithm proposed in Semasinghe and Hossain (2016),
where the learning phase lasts 500 iterations. We compare the baseline
strategy and the case in which each player uses LEWIS for different
values of the discount factor 𝛿 = {0.5, 0.75, 0.9, 0.95}, for 𝑇 = 500 stages,
as 𝑡99 = 89 (4) in the worst case (i.e., we set enough stages to deliver
most of the payoff). In all cases, we set 𝛼 = 0.5. The results obtained can
be observed in Fig. 5 and Table 3, where we set 𝜖 = 0.1 for LEWIS (we
tested for 𝜖 = {0.01, 0.1, 1}, but they all provided very similar results).

The results in Fig. 5 let us draw several interesting conclusions.
Firstly, we observe that the NE strategy provides a poor payoff 𝑉𝑛,𝑘
for both players, as there are other actions (i.e., transmission powers)
that provide both players with larger payoffs (i.e., payoffs such that
𝑉𝑘 > 𝑉𝑛,𝑘,∀𝑘 = 1, 2). Second, it is possible to check the cheat-proof
property of the baseline used, as the payoff that player 2 obtains
when deviates are always smaller than the payoff she could obtain by
not deviating. And thirdly, LEWIS outperforms the baseline algorithm,
specially as 𝛿 → 1, and provides payoffs which are better for both
players (see also Table 3). This payoff increase is not the only advantage
of LEWIS over the baseline in this problem. The baseline also has a
training phase, which must last enough iterations to allow all players
to find an adequate value for their transmission powers. In a real
deployment, this would consume time and resources: LEWIS does not
need such a training phase, and hence, it saves time and power. And
a final advantage of LEWIS consists on its flexibility, as changes in the
payoff function (i.e., using a metric different than 𝑆𝐼𝑁𝑅 in (16)) may
affect the performance of the baseline, as the baseline was obtained
as an equilibrium for this concrete reward function (Semasinghe and
Hossain, 2016). However, as LEWIS needs minimal information about
the problem (i.e., the payoff function of each player and the discount
factor), it can also adapt to other problems.

6. Application to WBAN interference

Let us now present a second application related to Wireless Body
Area Network (WBAN) interference control. A WBAN is formed by
several sensors deployed around the human body that send their data to
a central coordinator which controls the communication. Each sensor

measures health indicators, and hence, the data collected by the sensors

8

may be processed with medical purposes. However, in crowded envi-
ronments, two WBAN may interfere with each other, and this may be a
real threat to these networks which deal with delicate and sometimes
very urgent data (Hanlen et al., 2010). In order to deal with this
problem, Monsef and Saniie (2015) proposes using discounted repeated
games to minimize the interference, which means not only saving
battery, but also possibly saving lives if a WBAN needs to transmit a
very urgent packet. In the remainder of this Section, we apply LEWIS to
a setting based on the WBAN interference problem described in Monsef
and Saniie (2015).

6.1. Setup description

In Monsef and Saniie (2015), the authors pose the interference
problem between two WBANs as a discounted repeated game whose
stage game 𝐺 = ⟨𝑁𝑝, 𝐴, 𝑟⟩ is defined as:

• The players are the two WBANs that are interfering, and hence,
𝑁𝑝 = 2.

• Both players have the same two actions, hence, 𝐴1 = 𝐴2. The
actions to transmit in the next time slot (T) or not to transmit
(NT). That is, the central coordinator of each WBAN will allow
its sensors to transmit or not. Note that if both WBANs transmit
at the same time, there will be interference among the networks,
and hence, the packets will be lost.

• As each player has only two actions, the payoffs of the stage game
can be posed in matrix form as:
(

(0, 0) (−1, 1)
(1,−1) (−𝜆,−𝜆)

)

(17)

where player 1 (i.e., the first WBAN) is the row player and player
2 (i.e., the second WBAN) is the column player. In the matrix,
the payoff entries for each pair of actions 𝑎 = (𝑎1, 𝑎2) = (𝑁𝑇 , 𝑇 )
are (𝑟1(𝑎), 𝑟2(𝑎)). Note that if no player transmits, there is no gain
nor loss, and if both transmit at the same time, there is a loss −𝜆,
where 𝜆 is related to the time loss when there is a collision. Of
course, if one network transmits, and the other does not, the one
that transmits has a gain, while the one that does not has a loss.
Note that the stage game has a single NE, which is 𝑎1 = 𝑎2 = 𝑇 ,
which provides a payoff of 𝑟1 = 𝑟2 = −𝜆. Again, as in the case of
the distributed power control problem, repeating the game will
allow players to obtain better payoffs.

The authors in Monsef and Saniie (2015) also consider that each
WBAN may have different emergency to transmit (for instance, due to
limited battery life or very urgent health signals). They model this by
assigning a different discount factor to each WBAN: the one that has
more urgency to transmit has a lower discount factor than the other.
Without loss of generality, we assume that player 1 has the urgency to
transmit, and hence, 𝛿1 < 𝛿2.

In order to find an equilibrium for this repeated game, Monsef and
Saniie (2015) proposes the following two-phase strategy:

• During the first 𝑡𝑘 stages, player 1 uses 𝑎1 = 𝑇 and player 2 uses
𝑎2 = 𝑁𝑇 .

• From iteration 𝑡𝑘 + 1 onwards, player 1 uses 𝑎1 = 𝑁𝑇 and player
2 switches between 𝑎2 = 𝑁𝑇 and 𝑎2 = 𝑇 with probability 1∕2 − 𝑒
and 1∕2 + 𝑒 respectively, where 𝑒 ∈ [0, 1∕2] is a parameter that
controls the mixed strategy of player 2.

• Any deviation from the previous strategy causes the other player
to always play 𝑎 = 𝑇 (i.e., the NE strategy). Note that this is again
a Grim strategy.

where:

𝑡𝑘 ≤
log

(

1−𝜆
𝑒+3∕2

)

log 𝛿
, 𝑒 ≤

2𝛿1 − 1
𝜆 − 3

2
(18)
2 𝛿1 − 𝜆+1
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Table 3
Payoffs obtained in the distributed power control problem, 𝜖 = 0.1, where each pair of values account for the payoffs (𝑉1 , 𝑉2). Note that LEWIS
is able to provide the best payoffs across several 𝛿 values: while the baseline provides a fixed payoff, LEWIS provides better results as the
players become more patient, as there are more chances to achieve cooperation.
𝛿 0.5 0.75 0.9 0.95

NE payoff (−5.01,−3.18) (−5.01,−3.18) (−5.01,−3.18) (−5.01,−3.18)
Baseline payoff (without deviation) (−5.03,−3, 07) (−5.03,−3, 07) (−5.03,−3, 07) (−5.03,−3, 07)
Baseline payoff (with deviation) (−5.03,−3, 07) (−5.02,−3, 13) (−5.02,−3, 16) (−5.02,−3, 17)
LEWIS payoff (−4.94,−3, 09) (−4.87,−3, 00) (−4.83,−2.98) (−4.82,−2.99)
Fig. 6. Payoff obtained for player 1, 𝑉1 (circled points) and player 2, 𝑉2 (squared
points), when using the baseline strategy described in Monsef and Saniie (2015) (in
red) and LEWIS (in black). The baseline strategy provides the NE payoff, which is
𝑉1 = 𝑉2 = −𝜆 ≈ −0.65 in several cases except when condition (19) is fulfilled, that is,
𝛿1 > 0.81. Note that the baseline gives player 2 a payoff very close to its Nash payoff,
and allows player 1 to obtain a significantly higher payoff. Also, note how LEWIS
allows, in all cases, to obtain a higher payoff for both players than their NE payoff.

The strategy explained relies on the fact that the more patient player
ay postpone its transmissions to later. The strategy is proved to be a

alid one in Monsef and Saniie (2015) for the values of 𝑡𝑘 and 𝑒 shown
n (18). However, this strategy presents an important problem, and it is
he fact that the discount factor for the player 1 may be too restrictive.
s shown in Monsef and Saniie (2015), 𝛿1 must fulfill the following:

1 ≥
1 − 𝜆(𝑒 + 1∕2)
(1 + 𝜆)(1∕2 − 𝑒)

(19)

Thus, note that not all values of 𝛿1 can be used. This, in turn,
means that the strategy proposed may find a restrictive application
when certain values of 𝛿1 (i.e., urgency) are needed, as we are going to
show in the next Section.

6.2. Empirical results

We can use LEWIS as an alternative way to solve the WBAN inter-
ference game, as LEWIS is able to deal with heterogeneous discount
factors. In order to test the performance of LEWIS, we use the setup
described in Section 6.1, with 𝜆 = 628∕960, as in Monsef and Saniie
(2015).

First, let us find the minimum value of 𝛿1. We compute the first
derivative of (19) with respect to 𝑒 and we obtain that the sign of the
derivative depends on (1 − 𝜆)∕(1 + 𝜆). As we have that 𝜆 < 1, then 𝛿1
monotonously increases with the value of 𝑒, and hence, the minimum
value of 𝛿1 corresponds to 𝑒 = 0 (i.e., the minimum value of 𝑒), which
means that 𝛿1,𝑚𝑖𝑛 = (2− 𝜆)∕(1 + 𝜆) ≈ 0.81, from (19). This in turn means
that player 1 must expect that the game lasts at least (1 − 𝛿)−1 ≈ 5.36
stages, that is, the first WBAN expects to have more than 5 transmission
attempts. In case that the WBAN has more urgent data to transmit, then
𝛿1 would have to be smaller, and in that case, the strategy described in
the previous Section would not be valid, as condition (19) would not
be satisfied. Yet LEWIS is not affected by such restrictions, hence, we
proceed to compare LEWIS and the cooperative strategy described in
the previous Section as baseline.

We repeat the game (17) during 100 stages for the values 𝛿1 =
{0.6, 0.7, 0.8, 0.85, 0.9}, and we keep 𝛿 = 0.95 in all cases (again, 𝑡99 = 89
2
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(4) in the worst case). Note that this means that the first WBAN expects
that the number of stages in each case is 2.5, 3.33, 5, 6.67 and 10, while
the second WBAN expects 20 stages: note that the chosen values of 𝛿1
reflect different levels of urgency in the transmission, but note that only
the last two values of 𝛿1 allow for the cooperative baseline: in case that
𝛿1 < 0.81, the baseline resorts to using the NE strategy. We represent the
payoffs obtained for each player in Fig. 6, where we have used 𝜖 = 0.1
as this value maximizes the payoff of both players (we also tested for
𝜖 = {0, 0.01, 0.1, 1}). In all cases, we set 𝛼 = 0.5.

The results obtained in Fig. 6 let us draw several conclusions. First,
in case of using the baseline strategy where condition (19) is fulfilled
(i.e., 𝛿1 = {0.85, 0.9}), we note that the payoff obtained by player 2
is near the NE payoff, whereas the payoff obtained by the first player
is significantly larger. This is due to the choice of 𝑒 and 𝑡𝑘 with the
extreme values of the expressions (18). Note that there are several
combinations of 𝑒 and 𝑡𝑘 possibles, and they would benefit the payoff of
player 2 at the expense of the first player payoff. In other words, there
should be a negotiation mechanism that enforces fairness, as player 2
is receiving a payoff which is very close to its Nash payoff. Second,
note how LEWIS gives a better payoff to both players, as they receive
a similar increase in payoff from the NE payoff and player 1 obtains
a more significant payoff gain. LEWIS is thus competitive in terms of
payoffs with a strategy designed specifically for this game which, as we
have mentioned, is too restrictive in terms of 𝛿1. Note that LEWIS did
not need a detailed knowledge of the game, as it only needs the payoff
of each player, providing very good results in this situation in which
each player has a different 𝛿 value.

7. Conclusions

This article has focused on proposing a generic algorithm for dis-
counted RGs, which are becoming increasingly frequent in wireless
communications to model the conflicts that arise between the network
nodes. In these games, the discount factor accounts for uncertainty in
the length of the game and thus, puts a larger weights on the first
rewards in order to compute the total payoff. On the one hand, this is
an idea consistent with wireless interactions, where the discount factor
may account for mobility of the nodes, a finite battery or the urgency
in data transmission. On the other hand, it also means that current
learning algorithms, based on the average payoff scheme, should not
be used where we have a discounted RG. The usual workflow in most
papers where discounted RGs are applied to wireless networks consists
on defining the game and finding a certain strategy that provides good
payoffs. Thus, it is of interest trying to find an algorithm that can learn
a good strategy in such games.

We have first shown theoretically that using discounted payoffs
instead of average payoffs in an RG has an impact both in the speed
of learning and in the variance of the total payoff achieved by the
players. The first aspect appears due to the fact that most of the payoff
is assigned in the first stages of the game (Theorem 1), and the second
is due to the fact that the total payoff variance depends on the discount
factor (Theorem 2).

These differences mean that current algorithm for learning RGs,
mostly devoted to the average payoff case, are not adequate for dis-
counted RGs. In order to fill this gap, we develop LEWIS, an online
learning algorithm specifically designed for discounted RGs, suited for
wireless network settings as it is computationally light, it is adequate
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for incomplete and imperfect information settings (i.e., where a node
does not know the interests of the other nodes and cannot observe their
actions) and tries to reach a compromise between obtaining a good
payoff and guaranteeing a minimum payoff at the same time, where this
compromise is controlled by the parameter 𝜖. We have tested LEWIS
on two different wireless network settings taken from the literature,
where it has shown to have a good performance. Hence, we believe
that it can be an alternative way to address wireless network discounted
RGs settings, as it only needs minimum information to work (i.e., the
discount factor 𝛿 and the reward function of the player).

There are several future work lines that also arise from this work:

• First, regarding LEWIS, note that we have used a single action
selection block based on the payoff obtained in the past (11),
but there might be other action selection blocks that might help
LEWIS to cooperate, such as a prosocial action selection block (Al-
brecht and Stone, 2018). It is important observing that the action
selection blocks may take advantage of other information avail-
able to the player. For instance, an action selection block may
use past observations in order to select an action (Crandall and
Goodrich, 2011) given that the agent observes the actions of other
players.

• Note that LEWIS takes into account the first theoretical difference
between discounted and average RGs, as it considers that the
first rewards have more weight on the total payoff (Theorem 1).
However, LEWIS does not deal with the variance dependence with
the discount factor (Theorem 2). This may be included in future
versions of LEWIS, for instance, by modifying the action selection
block to return a percentile of the expected value rather than the
mean.

• Even though we have limited to use as security payoff the minmax
payoff, note that different values could be proposed if we had
more information about the game (i.e., a NE for instance).

• Finally, LEWIS could be tested in different situations where RGs
are used in order to study its concrete performance and how it
could be improved.
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