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Abstract

We cover the Warburg effect with a three-component evolutionary model, where each component repre-
sents a different metabolic strategy. In this context, a scenario involving cells expressing three different
phenotypes is presented. One tumour phenotype exhibits glycolytic metabolism through glucose uptake
and lactate secretion. Lactate is used by a second malignant phenotype to proliferate. The third pheno-
type represents healthy cells, which performs oxidative phosphorylation. The purpose of this model is to
gain a better understanding of the metabolic alterations associated with the Warburg effect. It is suitable
to reproduce some of the clinical trials obtained in colorectal cancer and other even more aggressive tu-
mours. It shows that lactate is an indicator of poor prognosis, since it favours the setting of polymorphic
tumour equilibria that complicates its treatment. This model is also used to train a reinforcement learn-
ing algorithm, known as Double Deep Q-networks, in order to provide the first optimal targeted therapy
based on experimental tumour growth inhibitors as genistein and AR-C155858. Our in silico solution
includes the optimal therapy for all the tumour state space and also ensures the best possible quality of
life for the patients, by considering the duration of treatment, the use of low-dose medications and the
existence of possible contraindications. Optimal therapies obtained with Double Deep Q-networks are
validated with the solutions of the Hamilton-Jacobi-Bellman equation.

Keywords: The Warburg effect, Optimal inhibition targeted therapy, Genistein, AR-C155858, Double
Deep Q-Networks.

1. Introduction

Metabolism can be understood as a cell strategy for the production of the energy that is needed to
survive and proliferate. Healthy cells obtain energy from glucose through two major metabolic pathways
known as glycolysis and oxidative phosphorylation (OXPHOS) [1]. In glycolysis, cells consume 2 molecules
of adenosine triphosphate (ATP) and obtains 4 molecules of ATP, by breaking down one glucose molecule
into two pyruvate molecules [2]. Colloquially speaking, an ATP molecule can be understood as the
elementary form of energy for the cell. Thus, during glycolysis, cells obtain an average energy of 2

ATP molecules per glucose molecule. In OXPHOS, pyruvate enters the citric acid cycle (Kreb’s cycle)
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in the mitochondria and 24-28 ATP molecules are generated from one glucose molecule converted into
pyruvate (see Chapter 12 in [3]). Glycolysis is an anaerobic metabolic pathway, but OXPHOS necessarily
requires oxygen. Under normal oxygen concentration, normoxic conditions, healthy cells make use of both
metabolic pathways and obtain a net yield of 26-30 ATP molecules per glucose molecule. Only under
hypoxia, such as intense physical exercise conditions, do cells shift their metabolism from OXPHOS
towards anaerobic glycolysis in order to cover the punctual energy demand that occurs when the oxygen
is scarce.

The Warburg effect is a metabolic alteration, known as aerobic glycolysis, where tumour cells avoid
OXPHOS and base their entire metabolism on glycolysis even in normoxic conditions. As a reminder,
conventional metabolism (glycolysis plus OXPHOS) produces up to 28 ATP molecules under normoxic
conditions, whereas glycolysis produces only 2 ATP molecules. It is still unclear why tumour cells prefer
this inefficient metabolism. It is thought that tumour cells consume large amounts of glucose, possibly in
order to compensate for energy deficiencies, and ferment lactic acid as well. Lactic acid (or simply lactate)
contributes to the acidification of the environment, which is harmless to tumour cells but detrimental
to healthy ones [4-7]. In addition, it is now known that lactate, long considered a waste product of
glycolytic metabolism, is used by malignant cells as an extra energy fuel (see e.g. [8, 9]) to proliferate and
reproduce. Uncontrolled cell growth also leads to vascularization problems for healthy cells. In contrast,
malignant cells are able to overcome these vascularization problems through sustained angiogenesis. In
sustained angiogenesis, also considered in [10, 11] as a hallmark of cancer, some tumour cells secrete
vascular endothelial growth factor to stimulate the growth of nearby blood vessels, which ensures the
continuous supply of nutrients and oxygen. In addition, access to the bloodstream allows tumour cells
to establish distant niches [12, 13], to later reach other organs, thus generating secondary tumours in the
form of metastases [14]. Therefore, the Warburg effect can be understood as a very complex evolutionary
process, which alters the environmental conditions to provide competitive advantage to malignant cells.
Moreover, the Warburg effect triggers other unwanted alterations, such as sustained angiogenesis and
metastasis. Even though the Warburg effect is not universal [15], it has been observed in a wide range
of cancer types, including colorectal cancer [16-18], glioblastoma [19, 20], bladder [21], kidney [22, 23],
breast [24, 25|, melanoma [26, 27|, pancreatic cancer [28-30], lung [31, 32|, prostate [33], thyroid [34, 35],
liver [36-38] and stomach [39-42]. All of these reasons contribute to our belief in this paper that the
elimination of the Warburg effect, or at the very least, its mitigation, may be relevant to the cure of
cancer.

From seminal work [43], Evolutionary Game Theory (EGT) has gained much popularity in cancer
research, due to its ability to model cell populations that express different phenotypes, and that compete
with each other according to the metabolic strategy that they show. The replicator equation (RE) is
probably the most widespread deterministic dynamics in EGT, which has also been used in [44-47| to
cover complex interactions that take place in a cell population subjected to the Warburg effect. RE

states that the growth rate in the number of types that express a strategy depends on the fitness of



such strategy within the population. In this paper we propose a three component evolutionary model,
a component per each metabolic strategy (glycolytic, non-glycolytic and oxidative), whose dynamic is
governed by RE. In our approach, cells with glycolytic strategy express phenotypes that uptake glucose
and secrete lactate. In contrast, non-glycolytic cells simply absorb lactate, while oxidative cells perform
conventional phosphorylation with oxygen. Diffusible factors as glucose, lactate and oxygen stimulate
non-linear cell responses (see e.g. [48]) when their ligands bind into the cell receptors . This stimulation
is considered in RE through the fitness of each metabolic strategy. Similarly to [49-52], here we consider
the Michaelis-Menten equation as a plausible way to model the fitness.

The vast majority of studies focused on EGT propose therapeutic treatments based on radiotherapy,
chemotherapy and immunotherapy. Experimental treatments based on tumour growth inhibitors have
received much less attention. In contrast to cytotoxic treatments, inhibitors target to cells that express
specific phenotypes, by preventing the ligands of some diffusible factors, such as glucose and lactate,
from binding the cell receptors. In this way, inhibitors seek to cancel cellular responses, thus avoiding the
development of malignant phenotypes. In this paper, we differentiate two types of inhibitors: competitive
and non—competitive inhibitors. Competitive inhibitors compete with the diffusible factors for binding
into the cell receptors. In this way, a cell receptor cannot bind a diffusible factor when is blocked by a
competitive inhibitor. In contrast, non—competitive inhibitors block the cell responses by bidding into
the ligands of the diffusible factors. The ligand of a diffusible factor cannot bind a cell receptors once it is
bound to the inhibitor. To the best of our knowledge, [44] was the first to mathematically formulate the
potential effect of these drugs in cancer therapies. However, we miss the design of effective therapeutic
treatment based on these drugs. In this paper, we propose the first optimal targeted therapy based on
the combination of experimental tumour growth inhibitors to annul the Warburg effect. We also provide
in silico results with application to colorectal cancer and other more aggressive tumours.

Standard cancer treatment consists of alternating drug sessions at Maximum Tolerated Dose (MTD)
followed by time off (drug holidays). This approach seeks to kill as many cancer cells as possible with
MTD, while controlling the toxic burden of drugs and side effects through rest days. However, MTD
only succeeds in eradicating therapy-sensitive tumour cells, thereby providing competitive advantage to
resistant cells [53]. In such a case, it may occur an uncontrolled growth of tumour cell whose traits are
resistant to therapy (competitive release [54]). To avoid this, the doctor can change the medication to
attack the resistant cells, producing a rebound of the cells sensitive to the previous medication. This
is falling into a vicious circle that is not recommended, since it may lead to disease chronification. On
the other hand, it can also happen that sensitive traits recover during drug-free times. In this other
case, the physician may reduce resting times, thus increasing the toxic effect of the drugs in the patient’s
body. In this paper, we think that formulating therapy programming as if it were an optimal control
problem can be a much better alternative to the conventional one. The general idea is to drive tumour
dynamics to a safe state, which implies the cure of patients, or at least their long-term survival, at the

lowest possible cost. With this purpose, the physician has to decide the dose concentration of each drug,



which needs to be supplied according to the tumour state. This approach results more attractive than
an MTD-based alternative, since the optimal control problem allows doctors to act actively against the
tumour. In other words, optimal control transforms the therapy problem into a Stackelberg Evolutionary
Game [55], where the physician is the leader who anticipates the tumour state and acts as a rational
player seeking to minimize the cost of an objective function.

The main concern in any therapy is to remove the presence of malignant cells. However, meeting this
objective does not necessarily guarantee the safeguarding of the patients’ life or the improvement of their
quality of life. It may also be relevant to consider other factors such as the duration of the treatment,
the toxicity of the drugs, the intensity of adverse side effects, the patient’s pathologies, age, weight, etc.
All of these factors make it difficult to formulate a problem aimed at providing the best possible therapy.
Furthermore, in case of formulating such a problem, there are no guarantees of finding the optimal
solution (or at least a good enough one) due to possible non-convexities. We can find very recent efforts
with in silico results in the field of optimal cancer therapy in [56-60]. The authors of [56-58] achieve
optimal chemotherapy and immunotherapy by applying Pontryagin’s maximum (or minimum) principle.
Similarly, [59] applies Forward Backward Sweep, an algorithm based on Pontryagin’s maximum principle,
to deliver optimal doses of abiraterone in prostate cancer. Importantly, Pontryagin’s maximum principle
provides necessary conditions for optimal control. However, these conditions are not sufficient, unless the
problem meets certain convexity conditions. Convexity limits the formulation of a general therapeutic
optimal control problem that may be more effective. In contrast, authors in [60] propose a bang-bang
control by solving the Hamilton-Jacobi-Bellman (HJB) equation of a tumor dynamics, subjected to a cost
function that penalizes the duration of the treatment, the delivery of chemotherapy doses and specific
terminal states. Different from Pontryagin’s maximum principle, the HJB equations provide necessary
and sufficient conditions for an optimum, regardless of the problem’s convexity. However, HJB requires
perfect knowledge of tumour dynamics equations. This condition can be relaxed by applying model-
free controllers, which do not require explicit knowledge of the environment or system. Several of these
controllers have already been used in the treatment of cancer (see e.g. [61-63]), but we miss quantitative
results to show their effectiveness as compared to the optimal solution.

In this paper, we present the best therapy obtained with Double Deep Q-Network (DDQN), which
is one of the most popular model-free algorithms. Far from conventional approaches, in this article
we do not propose the implementation of optimal therapies based on chemotherapy, immunotherapy or
radiotherapy, but rather on experimental tumor growth inhibitors. Our solution is more complete and
complex than a bang-bang control, since it allows the combination of different drugs in different doses.
In addition, our solution is targeted therapy because it allows physicians to attack several Warburg effect
symptoms simultaneously or separately. Our solution is complete because it applies to the entire problem
state space. We validate the resulting therapeutic solutions by comparing them with those obtained
with HJB, because our cost function is non-convex to consider the toxicity of the treatment, possible

contraindications, and adverse side effects in a more general way than is usually done in the literature.



This paper is structured as follows. Section 2 presents a novel three-component evolutionary model
to represent the Warburg effect. The effect of inhibitors over malignant phenotypes is also considered in
this section. Section 3 formally introduces the problem of optimal therapy. In Section 4, the problem
of optimal therapy is restated from the perspective of Markov decision processes (MDP). The use of
DDQN to solve this problem is introduced and justified. In this section, we also introduce the solutions
provided by HJB. This section ends with the parametrization of the optimal control problem and with
the parametrization of most of our tumour dynamics. In Section 5, we discus the results of our evolu-
tionary tumour growth model and the optimal therapy obtained with DDQN. Concretely, it explores the
conditions that favour the establishment of polymorphic equilibria and discuss whether lactate toxicity
plays a relevant role in tumour development. This section also compares the performance of DDQN with
other more conventional therapeutic strategies. It shows the solution with the optimal targeted therapy
in the full state space, which is provided by DDQN. This section ends by comparing the performance of

DDQN with HJB in a specific case. Conclusions are presented in Section 6.

2. The model

2.1. Tumour state

The tumour state or state of the system refers to the diversity of the phenotypes of a cell population.

Let £ = {S,L,0} denote the set of diffusible factors S, L, and O, which represent glucose, lactate,
and oxygen, respectively. Let G° denote a glycolytic phenotype with anaerobic metabolism. These cells
consume glucose through glucose transporters (GLUT), and secrete lactate as an end product, regardless
of the oxygen concentration that is available in the cell population. Let RY denote a phenotype which
absorbs lactate in presence of monocarboxylate transporters (MCT). These cells uptake lactate as an
extra energy fuel. Let HY denote a normal phenotype which uptakes oxygen. These cells base their
metabolism on conventional oxidative phosphorylation. Let M £ {G® RY, H?} denote the set of all
phenotypes expressed by the cells. This set includes the metabolic strategies which are available in the
cell population. Let x,,(t) denote the relative frequency of phenotype m € M in the cell population.
The state of the population is given by:

2(t) £ (@ (1) mer € AN, (1)

where AMI £ {z(t) € RIMI 1 0 < 2, (t) < 1,Y,,c g m(t) = 1} denotes the simplex of (M| — 1)

dimensions in RMI.

2.2. Diffusible factors

The diffusible factor concentrations stimulate the proliferation of the phenotypes. Let a £ (ay) ver €
§R‘>LO‘ denote the growth factor concentrations in normal conditions. This vector represents external
resources provided by the host. Let by > 0 denote the amount of lactate secreted by each cell that

expresses G°. We introduce a definition describing the growth factor concentrations.



Definition 1. The expected growth factor concentration which stimulates to phenotype m € M, denoted

dpy : AMI R0, is defined as:

dgs (z(t)) £ as, (2)
dpe (®(t) £ ar, +brags(t), (3)
dgo (m(t)) L aop. (4)

Expression (2) shows the expected glucose concentration which stimulates to the growing of G*.
Expression (3) depicts the lactate concentration which stimulate to RE. Recall that ay, in (3) is the
lactate concentration which is present in the cell population in normal conditions. Lactate is uniformly
spread in the cell population, and brzgs expresses in (3), the part of lactate which is produced by G*
and that stimulates to RY. Equation (4) indicates the expected oxygen concentration which stimulates

to HO.

2.3. Rewversible inhibitors

We now introduce the concentration of therapeutic drugs in the host’s organism. Let C' and C denote
the set of competitive and non-competitive inhibitors, respectively. Let I £ C U C denote the set of
reversible inhibitors, which meets C N C = . Let R>o denote the set of non-negative real numbers.
Let ik (t) denote the concentration of inhibitor k& € IC, which targets to phenotype m € M. The

concentration of drugs is given by:

w(t) 2 (i (8)) et rer € R (5)

Expression (5) can be understood as the control action that indicates the dose concentration of inhibitors

applied by the physician.

2.4. Fitness and lactate tozicity

Fitness refers to the benefit obtained by phenotypes, when diffusible factors ligands bind to cell
receptors. Fitness determines the reproductive capacity of phenotypes. Usually, diffusible factors have
hyperbolic effects on the fitness of phenotypes. Reversible inhibitors may neutralize the fitness in two
different ways. Competitive inhibitors block cell receptors where diffusible factors bind. Non-competitive
inhibitors neutralize the cellular response when they bind to diffusible factor ligands. Let 5,, > 0 denote
the affinity of phenotype m € M for the diffusible factor that stimulate it. Let £, > 0 denote the

inhibitory constant. We first introduce a definition with the fitness of phenotypes G and R”.

Definition 2. The fitness of glycolytic and abnormal ozidative phenotypes, denoted fp, : AMI X?}%%H’CI —



R0, is defined for allm € M, m # H®, as follows:

1
ifkecC, (6a)
Bm umk(t)
v () ()
1 _
A ifkeC, (6b)
fm (®(t),u(t)) = Bm U (1)
(1+ ) 0+ 527)
Hl/jm otherwise. (6¢)
dim ((t))

Expression (6¢) is a normalized version of the Michaelis-Menten equation [64]. This equation rep-
resents the fitness of phenotypes in absence of inhibitors, and shows a hyperbolic shape which is linear
when the diffusible factor concentration is very low. Interestingly, reference [65] predicts GLUT1 (glucose
transporter 1) kinetics with a normalized version of the Michaelis-Menten equation and [66] states the
same for MCT1 (monocarboxylate transporter 1) kinetics. Thus (6¢) seems to be a plausible function
for the fitness of phenotypes G° and R'. Term f3,,, affinity in (6a) — (6¢c), represents the diffusible
factor concentration which makes m € M responds with half the maximum. Equations (6a) and (6b)
are accepted in [64, 67-72] as formal expressions that characterize the impact of reversible inhibitors.
Expression (6a) depicts the fitness of phenotypes in the presence of competitive inhibitors. Competitive
inhibitors reduce the affinity from £, in (6¢) t0 B (1 + Uumk(t)/Bmk) in (6a). Expression (6b) indicates
the fitness of phenotypes in the presence of non-competitive inhibitors. This class of drug reduces the

maximum fitness from 1 in (6¢) to Bk /(wmk(t) + Bmk) in (6b).

1.0 1
107 — umc=0.0
= Unc=0.5
0.8 08 == umc=10
—: Upc=15
061 0.6
o E Ll
041 0.4 v
.................. _y
0.21 0.2 1 :
0.0 0.0
0 5 10 15 20 25 30 0 20 40 60 80 100
dm dm

(a) (b)

Figure 1: Cellular fitness vs. dose concentration of reversible inhibitors. Settings: Bm = 1, B = B,,& = 0.5. (a) Effect of
competitive inhibitors on cellular fitness. (b) Effect of non-competitive inhibitors on cellular fitness. Competitive inhibitors
shift the affinity to the right while non-competitive inhibitors reduce the maximum fitness. In the presence of inhibitors,

tumour phenotypes need more diffusible factor to keep the same fitness.

Let 5P > 0 denote the toxicity threshold for lactate. Let 6, > 0 denote the impact of lactate on
phenotype m € M. Similarly to (6a)-(6¢c) and without loss of generality, the fitness of H is a function

with domain AIMI x ?)‘E‘z/\gwq, which is defined as:



Definition 3. The fitness of conventional oxidative phenotypes, denoted fn, : AMI x ?R%HK‘ — R, is

defined for allm € M, m = H®, as follows:

S S if dpe (b)) < £, (7a)
e
fmla@u) 2!
——————— — O (dge (2(t)) — €°P)  otherwise . (7b)
1+ 577”
dm (z(t))

Reference [73] states that healthy phenotypes respond with a Michaelis-Menten function. Similarly,
expression (7a) provides the fitness of HY under normal conditions, i.e. when the acidity of the envi-
ronment does not prevent or hinder the normal development of this phenotype. Scalar ¢°“P in (7a) and
(7b) can be understood as a tolerance threshold of HY to lactate. Lactate concentrations higher than
£5UP penalize the fitness of H® with an extra cost §odge (z(t)) in (7b). This cost is only considered in
the fitness of cells with conventional oxidative metabolism, because authors in [4-7] suggest that acidosis
given by glycolysis may result toxic to healthy cells, and harmless to cancerous cells. Term 6,,£°%P in (7b)
provides a smoother and more natural response in the presence of lactate, by avoiding the discontinuity

at dgr (x(t)) = £5UP.

2.5. Cell population dynamic

RE is the deterministic differential equation most extended in EGT. Let N,,, € R>o denote the number
of cells that express phenotype m € M. RE states that the per capita growth rate in the number of cells
that express a phenotype is equal to the fitness of the phenotype [74]:

£ fm (2(t),u(t)),Vm € M. (8)

In this way, RE proposes the reproduction and survival of the fittest types. However, conventional RE
does not include the effects of external agents to the population, and states that fitness only depends on
state x(t). In coherence with previous subsections, expression (8) also includes the effect of therapeutic
actions through drug concentrations represented by w(t). Let &, denote the dynamic of m € M that

matches RE. A straightforward calculus allows to express (8) in relative frequencies (see Appendix A):

B (t) £ 20 (t) (fm (z(t),u(t)) — Z I (2(t), u(t)) mn(t)> ,Vm € M. 9)

nemM
Equation (9) states that the growth rate expressed in relative frequency of a phenotype m € M is given

by the difference between its fitness f,, (x(¢),u(t)), and the averaged fitness of the population:
F(@(t),u(t) £ Y fol@(t),ut) za(t). (10)
neM

Recall the per capita growth rate remains being (8). Thus (8) and (9) are two ways of expressing the
same idea (the survival and reproduction of individuals depend on their fitness within the group), but

(8) is a map Ny, : RM x R R while (9) is a map @, : AMEx R AL



It is well known that (9) is the most common way to express the RE (see e.g. [75, 76]), since it provides
dynamic responses which are bounded on simplex A. This property results interesting, specially in those

cases where the difference in the number of individuals which express each of the types is high.

3. The problem

In this section we present the problem of optimal therapy.

Let o be a positive or null scalar, which penalizes the duration of treatment. Let u/"%* > 0 denote
the maximum tolerated concentration of inhibitor k£ € K, which targets to m € M, and that is set at
physician discretion, according to the characteristics of the patient (age, weight, medical history, etc.)
Let 0.1 be a positive scalar, which weights the relative toxicity of mk — inhibitor with respect to others.
It is used to consider medical contraindications or side effects of some drugs over others. Let 275" € (0, 1)
denote the minimum allowable relative frequency for phenotype H?, which is compatible with the life
of the patient. Lower relative frequencies imply the death or the administration of palliative care to the

max

patient. Let 273" € (0,1) denote the threshold that x o has to overcome in order for the patient to be

cured. We now formally introduce the cost function of the problem:

Definition 4. The cost function, denoted J : AMI x %%HK‘ — R0, is defined as follows:

J(z(t),u(t) £ K(z(t)) + t f[i(w(t)m(t))dt, (11)
such that:
L [0 ifrpolty) < amr, (12a)
K(a(t) £ |
0  otherwise, (12b)
and
L (x(t), u(t)) £ h(z(t)) + e(u(t)), (13)
where
0 ifzgo(t) > xnd”, (14a)
M@ () 2 { o
o otherwise, (14b)
cwt) e Y ool (15)
meM,kEK mk

Then K(x(t)) is a terminal cost function that severely penalizes therapy failure. The second term in
(11) is the cost-to-go function or the trajectory cost from state x(tg) to x(ts), and is used to evaluate
the way by which a final state is reached from an initial state. Concretely, h(x(t)) increases the cost of
the treatment during the time it takes place, while e(u(t)) regulates both the doses and the toxicity.

Let T' > 0 denotes the time that treatment lasts. The goal consists on finding the optimal control

therapy w* (z(t)), which minimizes the cost function (11) from x(t = 0) to x(t = T):

u* (z(t)) £ argmin J (x(t), u(t)), (16)
st @ (t) = 2m (t) (fm (), u(t)) — F (2(t), u(t))) ,Ym € M.



In the next section, we indicate how to solve (16) for all the state space of the problem.

4. Materials and methodology

4.1. Double Deep Q-Network

In this subsection we focus on solving (16), with a reinforcement learning (RL)-based technique called
Double Deep Q-Network (DDQN).

Let us frame the problem described in Section 3 in the context of Markov decision process (MDP).
An MDP is an extension of Markovian processes, where the agent (a physician in our case) takes actions
sequentially (by administering different concentrations of competitive and/or non-competitive inhibitors)
to drive the system (the cell population) to a specific state (state involving cure of the patient). A

discrete-time MDP can be defined with a tuple (X, A, P, R), where:
e X is the set of states.
e A is the set of actions.

e p: X xA—|0,1] is the transition probability function, where p (z111|2¢, ar) denotes the probability
of getting state x;y1 € X, given that the state of the system is x; € X and the agent plays action

atGA.

o r: X x Ax X — R is the reward function, where r (¢, at, 7141) denotes the reward perceived by

the agent, when the system goes from state z; to sate x;; after playing action a;.

The goal of any MDP is to maximize the expected cumulative reward in an infinite time horizon:

max E (Z 'ytr(a:t,at7mt+1)) , (17)

t=0
where v £ (0,1) is called the discount factor.

We now reformulate the problem described in Section 3 and pose it as an MDP problem. Suppose that
X is a discrete version of AMI and that p (x;,1|z¢, a¢) is a deterministic transition probability function
set by (9). Let Uy, denote a discrete set with the dose concentrations of inhibitor k£ € K that targets to
phenotype m € M. The set of actions, A £ eric,me s Uem, Tepresents the Cartesian product of sets
Ukm, and includes all possible combination of drugs that can be used in a inhibitor—based therapy. In this
way, any action a; € A is unequivocally defined by a specific combination of drugs. We also define two
terminal state sets. The first terminal state set, X.pq1 S {1 € X 1 xgo < xzﬁ)”}, occurs when therapy
fails. In that case, when therapy fails, the agent perceives a high enough penalty ¢ € R.o. The second
terminal state set is Xopgo = {71 € X : 2o > 3"} and implies that therapy succeed. We are ready to

reformulate cost function (11) as an MDP reward function:
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c if 2141 € Xendr, (18a)

r (¢, a8, i11) 240 if x4 € Xenago, (18b)

— (0 +e(ar)) otherwise. (18c)

With the problem posed according to an MDP, the solution can be obtained by solving the Bellman

equation [77, 78]. The Bellman equation, denoted as v : X — R, is defined as follows:

v(x) 2 (Ilngﬁ r (T, ap, Tey1) + E D (Tep1|me, ar) v (xesq) |, Vo € X (19)
t
mt+1€X

Expression (19) provides the value function or the maximum expected long term return of state x;. In
short, it indicates how good or bad such a state is.

The Bellman equation, given by (19), is called state value function, to emphasize that it is defined in
terms of states. We can also find another function called g—function, which expresses a similar idea as
(19) does, but in terms of state—action pairs instead of just states. The g—function, or state-action value
function, is denoted as g : X x A — R and is defined as follows:

q(zg,a8) 27 (2, a0, 1) + 7y Z p(xpy1l|Te, ar) agllaé(Aq (Tt41,at41), V2 € X, Vag € A (20)
To41€X
Analogously to the Bellman equation, now g—function provides the maximum expected long term return
of playing action a; € A at state x; € X.

Let us recall that expressions (19) and (20) are equivalent, in the sense that (19) refers to states
(indicates how good a state is), whereas (20) refers to state-action pairs (indicates the effectiveness of
executing an action in a certain state). In fact, both expressions can be derived from each other as

follows:

v@e) Smax g (zc, a) (21)
q(we,a0) =7 (@,a02001) +9 Y p(@galre, an) v (@), Vo, € X, Va, € A, (22)
Tip1EX

So far, we have taken the problem posed in Section 3, formulated it as an MDP, and solved it with
either (19), (20), (21), or (22). However, this approach requires us to know transition probabilities
p (Tt41|Tt, a¢) and we may not have access to this information. Therefore, we need a methodology to
approximate the Bellman equation or the q—function without knowing the transition probabilities or the
tumour’s dynamic equations. RL offers a framework to address this problem.

Fig. 2 depicts a typical RL-based algorithm schematic. In this scenario, an agent observes state x
and executes action a;. As a consequence of the action, the scenario changes from state x; to z;41 and the
agent receives a reward r (z, ar, ¢4+1). According to our scenario, the environment in Fig. 2 is defined
by (9), the reward is defined by (18), and the actions are defined by combination of drugs listed later

in Table 3. In this way, q—function can be estimated with a model-free techniques as Q-learning, which
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Figure 2: Generalized RL—scheme.

is probably the simplest RL-based algorithm that can be used to solve complex problems as (16). Let
a € (0,1) denote a scalar called the learning rate. Q-learning updates the value of playing action a; € A

when the state of the system is z; € X, as follows (see e.g. [77]):

q(zy,a8) (1 —a)q(xg,ae) + @ <r (z¢, at, Tpy1) + ’yamaé(Aq (xt+17at+1)) NV, e € X (23)
t+1

Note that (23) estimates (20) without considering transition probabilities and without access to dy-
namic (9). The convergence of (23) is achieved by applying the scheme of Fig. 2 iteratively. Once
expression (23) converges, the optimal control is given by the actions that deliver the maximum expected
return at each state.

Q-learning requires a discrete state-action set, while AIMI  the state space in the problem at hand, is
continuous. A discretized version of A™MI would lead to a state-action set with such a large dimensionality
that it would made (23) be computationally infeasible. This drawback is overcome with neural networks,
considered as universal approximation functions, with the ability to map from continuous states x(t) €
AMI to discrete actions a; € A. In this way, we move from Q-learning to Deep Q-learning (or Deep
Q-networks) by posing (16) as an MDP, with direct access to the continuous state space. Let 6 and
0" denote the weights of the policy and the target nets respectively. Different from Q-learning, Deep

Q-networks (DQN) now estimates the state-action value function (20) with a Q-function:

Q (x4, a450) = 1 (@4, a1, T441) +7 max Q (T441,a41;0'), (24)
at1€A

where

2
L)2E (r (T, Qg Tey1) + maé(AQ (Tp41,a041;0") — Q (x4, ay; 6)) (25)
Qt41

is the loss function, which updates the weights of the policy net by using the gradient descent algorithm.

However, the original DQN algorithm may overestimate the value of the actions under certain con-
ditions [79]. DDQN can alleviate this overestimation by introducing a slight change in (24). Different
from DQN, DDQN involves both the policy and target networks in maximizing the estimation of the
Q-function. Concretely, the policy net selects the action to be used (i.e., the one that maximizes the
value), but the value is taken from the target network:

Q (w¢,at50) £ 7 (24, a4, T041) +7Q (%HﬁfgmaXQ (Teg1,a04130) 5 9') - (26)

at1€A
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We make use of this variation of DQN, as it does introduce a negligible increment on the computational
load and may improve significantly the algorithm results. Our network topology consists on a single
fully—connected hidden layer with 72 neurons and relu activation function. We set v = 0.9992, e = 0.001
and also implement e—greedy policy from €, = 1.0 t0 €,,5, = 0.0001 with decay 2.222-107° per episode.
Our replay memory consists on 512 experiences which update the target network every 10 episodes. An
episode ends when the problem trajectory reaches one of the terminal states defined above. Full details
with Python code implementation of DDQN, environment (9) and reward function (18) are available at

https://github.com/jsanno/ddgn.

4.2. The Hamilton—Jacobi-Bellman equation

The Hamilton—Jacobi-Bellman (HJB) equation is the most important equation in non-linear control
theory and one of the most popular methodologies, for solving deterministic continuous time optimal
controls. It was also used in [80] to solve problems similar to (16). In this paper, we solve the HIB
equation in order to compare the goodness of the solutions obtained with DDQN and validate them. The

HJB equation states the condition for the value function:

%‘tf s _ (a f(z(t),u(t) + £(:c(t),u(t))) : (27)

u(t)eu

As the value function represents the minimum expected long term cost subject to a dynamic f (x(t), u(t)),
then problem (16) can be reformulated in terms of the value function, as follows:
V (x(to),to,t¢) £ min J(x(t Jto,tr),
(@(ta).to.t) £ min, J (@(t).u(t).to.ty)
dx

(28)

where U denotes the set of admissible controls, which is equal to %lMH | for the problem we are dealing
with, and f (z(¢), w(t)) denotes the dynamic under control, i.e. the RE introduced in Subsection 2.5.

However, in most cases it is very difficult and even intractable to obtain a classical solution of problem
(28), i.e., a continuous and differentiable value function, since the minimization operator in (27) implies
solving a system with non-linear partial differential equations. For this reason, we solve the HJB equation
numerically with a tool called BocopHJB, which can be found available for free at [81]. BocopHJB
proposes a numerical approximation, which consists of discretizing the state space, to later iteratively
estimate the value function through dynamic programming. Concretely, let N € Z denote the number
of time steps. Let hg = th represents the time step size. Then, the time for any step k € Z if given by
& 2 hok. Algorithm 1 includes the BocopHJB’s pseudocode to compute the value function at t;.
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Algorithm 1 BOCOPHJB: Compute value function at ¢,
Require: 0 < k< N

1: for z € Grid do
2: if Kk == N then

3: Vi(z) < K(tf)

4: else

5: Tpt1 < ¢+ hof(u,x)

6: Vi(z) < mingey (hoL(tr, w, ) + By [Viy1(2ry1)])
7 end if

8: end for

4.8. Control problem parametrization

Let us start with the parametrization of the functions introduced in Definitions 2 and 3. This
parametrization can also be found summarized in Table 1. We first focus on the findings of [82], on
the glucose and lactate concentrations in colorectal liver metastasis. Authors in this reference do not
appreciate significant differences in the glucose concentrations of healthy and tumour tissues. They state
17.1 4+ 3.6 mM and 17.2 +£ 1.5 mM, for the glucose concentrations found in healthy and tumour tissues,
respectively. For this reason we set ag = 13.5 — 20.7 mM in Table 1. It can be found in the same refer-
ence, that the lactate concentrations in healthy tissues is 1.7 &£ 0.3 mM. This parameter is later tuned in
Subsection 5.1.1 to reproduce some clinical results.

Reference [4] indicates that blood lactate concentrations for healthy and cancerous tissues are 1.5 — 3
mM and 10 — 30 mM, respectively. Here we understand that lactate becomes toxic for HC from 10 mM
and assign ¢*“? = 10 mM in Table 1. However, we do not have medical data to characterize the negative
impact of lactate over the healthy cells. For the moment, we set 8o = 0.0—0.01 M~ in Table 1 and tune
this parameter in Subsection 5.1.3 in order to reproduce the clinical results observed in the literature.
Similarly, we set by, = 9.5 — 28.3 in Table 1 and tune this parameter in Subsections 5.1.1 and 5.1.2.

Glucose transporter 1 (GLUT1) is overexpressed in colorectal cancer [83]. Recall that GLUTI is one
of fourteen proteins which are responsible for the uptake of glucose across the cell membrane. Reference
[84] provides estimations with the affinity of GLUT1 for glucose in 3 — 7 mM. For this reason we set
Bgs =3 — 7 mM in Table 1. Monocarboxylate transporter 1 (MCT1) is also overexpressed in colorectal
cancer [85]. Recall that MCT1 is associated to oxidative cells and lactate uptake [86-89]. According to
[88—90], the affinity of MCT1 for lactate is about 3 — 10 mM. For this reason we set Spr = 3 — 10 mM.

Reference [73] fits the affinity of healthy phenotypes for the oxygen at 14.37 uM. In addition, hypoxia
and normoxia conditions are established in [91] with oxygen tensions 1-5% and 10-21%, respectively.
By replacing these data and Sgo = 14.37 uM in (7a), we obtain 0.14-0.75 uM and 1.6-3.82 M as the
oxygen concentrations in hypoxic and normoxic conditions, respectively. Since the Warburg effect is a

metabolic alteration that occurs in normoxic conditions, we set ap = 3.82 uM in Table 1, for simplicity
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Diffusible factors

Factor Value Ref.

Glucose (normal conditions) | as = 13.5 —20.7 mM [82]

Lactate (normal conditions) | ar =1.4 —2 mM [82]

Oxygen (normoxia) ao = 3.82 uM [91]

Lactate tolerance £°"P =10 mM [4]

Lactate toxicity 0o =0.0—-0.01 M~! Section 5.1.3
Lactate production br = 9.5 —28.3 mM ché Sections 5.1.1, 5.1.2

Phenotypes

Metabolism Affinity Ref.
Glycolytic Bgs =3 =7 mM [84]
Oxidative Brr =3 —10 mM [88-90]

Bro = 14.37 uM [73]

Reversible inhibitors

Inhibitor Inhibitory constant Ref.
Isoflavone genistein Bagsc =T uM [92]
AR-C155858 Brre = 2.3 1M [93]

Table 1: Fitness parametrization.

and to ensure that the environment is well enough oxygenated.

Isoflavone genistein is a competitive GLUT1 inhibitor with inhibitory constant equal to 7 uM [92],
while AR-C155858 is a non-competitive inhibitor of MCT1 whose inhibitory constant is about 2.3 1.4
nM [93]. With this information we set Sgsc = 7 uM and Srre = 2.3 nM in Table 1.

We now assign numerical values to the problem established in Definition 4, and also include additional
comments, regarding the implementation of the DDQN algorithm introduced in Subsection 4.1. All the
parametrization of the control problem can also be found in Table 2.

Authors in [94] state that genistein at concentrations 5 — 200 uM can arrest cell cycle by modulating
regulatory proteins. In contrast, according to [95], the efficacy of MCT1 can be modulated with AR-
C155858 at concentrations ranging from 329 nM to 819 nM. In this paper we set u”&é’é =51.03 uM and
ugsd = 102.06 pM as the minimum and maximum doses of genistein, which can be applied to the patient.
Similarly, we decide ugz% = 2.7 nM and w7} = 5.4 nM for the dose concentrations of AR-C155858.
Note that ugss and uii¢ are too far from the maximum concentration of genistein and AR-C155858
established in [94] and [95], respectively. In addition, with this parametrization we provide similar weights

to genistein and AR-C155858 in (15) and (18c), since ui&e, /ugié?, ~ i Juiiie,,

We assume that AR-
(155858 has more adverse effects or contraindications than genistein, by assigning ogsc = 1,055 = 10.
We also penalize the duration of the treatment with ¢ = 0.01.

For the running of DDQN, we set w’H’”o” = 0.1 and 273" = 0.9. This algorithm is trained for 90,000
episodes, with 300 as the maximum number of steps per episode, and with step size of 2 cell generations.

An episode ends when zyo(t) < 248", xyo(t) > x&" or when the number of iterations is 300. We set

min

an extra penalization with ¢ = —1,000 in (18a), whether o (t) < 78"
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Description Value Ref.
Minimum genistein dose ugse = 51.03 uM [94]
Maximum genistein dose ugse = 102.06 uM [94]
Minimum AR-C155858 dose | upjrs = 2.7 nM [95]
Maximum AR-C155858 dose | uphié = 5.4 nM [95]
Medical contraindications ogsg =1,0pte =10 | —
Failed terminal state zHo =0.1 -
Safe terminal state rHe =0.9 -
Treatment duration cost o =0.01 -
Failed therapy penalty c=—1,000 -

Table 2: Control problem parametrization.

The action space is given by the dose concentrations of genistein and AR-C155858, which are applied
to the patient in each iteration. This action space is collected in Table 3. Finally, recall that AMM| is the

state space, since the population state is defined as (1).

Action
1 2 3 4 5 6 7 8 9
Genistein dose 0.0 0.0 0.0 Wi, QIR I g maT g mazr -, mas

GSc "GSc “GSc TGSc TGgSc TGSc

AR-C155858 dose 0.0 w7 wBpe 0.0 Wi wpfe 0.0 i upis

Table 3: Control problem action space.

5. Results and discussion
This section is divided into two different parts:

e Subsection 5.1 uses the model presented in Section 2, in order to reproduce some observations
obtained from clinical trials of colorectal cancer and other tumours. We also explore the conditions
that favour the establishment of polymorphic equilibria and discus whether lactate toxicity plays a

relevant role in tumour development.

e Subsection 5.2 presents the optimal therapeutic policy (the optimal targeted therapy solution in the
complete state space) provided by DDQN for 4 different tumor dynamics identified in Subsection
5.1. We illustrate the performance of these policies, comparing them with other more conventional
therapeutic routines. Finally, we validate the results provided by DDQN by comparing them with

the numerical solutions of the HJB equation.
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5.1. Model results
5.1.1. Monomorphic populations in colorectal cancer

In this subsection we parametrize our model with data obtained in [82] about colorectal liver metas-
tasis. We show that our model is able to provide the same clinical finding about lactate concentration
that can be found at [82]. We also provide further results with the evolution of cell populations.

Fig. 3a and 3b show how the phenotypic composition of cell populations evolves. Black lines are
different trajectories in order to represent the overall dynamic of the cell population. The background
colors on the simplex represent the modulus of the gradient associated with the dynamics. Specifically,
yellow colors represent fast dynamics, while the blue and purple colors represent slower ones. The filled
and hollow red dots represent stable and unstable state equilibria respectively. Fig. 3¢ and 3d report the

time course of lactate concentrations in the cell populations.

TGS
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Figure 3: Reproducing some of the results provided by [82] regarding colorectal liver metastases. (a),(b) Tumour dynamics.
(c),(d) Time course of lactate concentration. Settings in (a),(c) ar, = 1.7 mM, by, = 9.8 mM xaé Settings in (b),(d)
ar, =2 mM, by, = 9.5 mM zalg Settings in (a),(b),(c),(d), ag = 17.1 mM, Bgs =5 mM, Brr = 6.5 mM, 6,0 = 0.01

M~! (the rest of parameters are included in Table 1).

Results in Fig. 3a show that HO rejects invasions by R”. In these cases, lactate level remains at 1.7
mM (see Fig. 3c). This level matches with the mean of lactate concentrations found in normal tissues
[82]. In this way, a cell population composed by phenotype H® corresponds to a healthy colorectal liver

tissue in our model. Any other invasion collapses the population with phenotype G°. In these other
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cases, the lactate concentration grows up to 11.5 mM (see Fig. 3c), which matches with the mean of
lactate concentrations found in cancerous tissues [82]. This result suggests that phenotype G*° counts
with enough glucose to reproduce. In contrast, phenotype R” do not have enough lactate under normal
conditions, and phenotype G does not produce enough lactate to support RY. Consequently, R” tends
to die out while G° overcomes the cell population.

We now increase the lactate which is available in normal conditions (from ar = 1.7 mM to ay, = 2
mM) and reduce the lactate producing capacity of G° (from by, = 9.8 mM xaé to by, = 9.5 mM xaé)
Level 2 mM in Fig. 3d matches with the maximum lactate concentration which is found in healthy
tissues [82]. Again, Fig. 3d also shows that general invasions drive G*° to fixation, while H° and R’ are
extinguished. Eventually, phenotype R” is able to fixate in the population, but only in those invasions
which do not include the presence of phenotype G*.

Then it can be concluded that in the case of heterogeneous mutations, cells with glycolytic metabolism
in colorectal liver tissues count with enough glucose resources to fixate in the population. In contrast,
cells expressing other phenotypes tend to extinction. The end result in colorectal liver metastasis is a

monomorphism given by populations with cells that express G°.

5.1.2. Polymorphic populations

In this subsection we explore the conditions that favour polymorphisms in the Warburg effect. With
this end, we take the same parameters as those used in Fig. 3a and 3c; but now, we increase the amount
of lactate produced by G*.

Fig. 4a and 4b show mixed strategy equilibria. Let * € A denote a mixed strategy equilibria.
These equilibria represent different polymorphisms that share two characteristics. First, phenotype H© is
extinct since it is not part of any of these equilibria (i.e. 27,0 = 0). Second, the fitness of G matches with
the fitness of RY (i.e. fgs (z*) = fre (x*)). Please note that 3,0 =0 and fgs (z*) = fre (x*) satisfy
equilibrium conditions in (9). In addition, these equilibria are reached in Fig. 4c and 4d with lactate
levels equal to 22.23 mM. Recall that cancerous tissues show lactate concentrations about 10—30 mM (see
e.g. [4]). Thus these polymorphisms represent tumour cell populations. The mixed equilibria in Fig. 4a
and Fig. 4b are respectively at (qumxz,s,x*RL) ~ (0,0.95,0.035) and (x*HO’xE'S?x*RL> ~ (0,0.72,0.26).
Therefore, the producing capacity of G° favours the presence of R in polymorphisms.

As it occurs in Fig. 3a and 3c, Fig. 4 shows that 1.7 mM is not enough lactate for R* to proliferate.
That is the reason why H rejects any invasion by RY. Different from results provided in Fig. 3a and
3c, Fig. 4 reports now monomorphic equilibria with G, only in the case of invasions by this phenotype.
In this way, 23 mM in Fig. 4c and 30 mM in Fig. 4d represent complete invasions by phenotype G°.

In conclusion, according to data found at [82] and with the parametrization introduced in Subsection
4.3, it can be deduced that R” needs 22.23 mM of lactate to match its fitness with G°. This quantity
of lactate is too high to be found in healthy tissues (see e.g. [4]). Thus, phenotype R requires G to

produce extra lactate to ensure its survival, as well as the constitution of tumour polymorphisms.

18



(a) (b)

> 30 H =
o 23 mM- / 30 mM
S 20 22.23 mM [~
g . 20 2223 mM' |
§ 15 r
=i
)
o 10 =
E 10 i
| 5
K| _ L
1.7 mM 1.7 mM
\ \ \ \ \ \ \ T T T T \
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Generation Generation

(c) (d)

Figure 4: Lactate promotes polymorphic populations thus increasing the complexity of any targeted therapy. (a),(b)

Tumour dynamics. (c),(d) Time course of lactate concentration. Settings in (a),(c) by = 21.3 mM zg}g Settings in

(b)5(d) by, = 28.3 mM 2. Settings in (a),(b),(c),(d) as = 17.1 mM, az = 1.7 mM, Bgs = 5 mM, Bzr = 6.5 mM,
00 =0.01 M~ (the rest of parameters are included in Table 1).

5.1.8. Lactate toxicity in colorectal cancer

Many authors as [4-7] argue that lactate can be poisonous to healthy cells and innocuous to cancer
cells. In this subsection we review the influence of lactate toxicity on colorectal liver metastasis.

In previous subsections we set 80 = 0.01 M~!. Suppose that lactate is safe for HO regardless of its
concentration in the population; that is, we now set 60 = 0. Suppose that under normoxic conditions,
cells HO are at the best possible scenario before invasion occurs. In such a scenario, the fitness of HC
should be as high as possible, while the fitness of R and G*° should be as low as possible. This situation
can be considered by selecting from Table 1 the following parametrization: ag = 13.5 mM, ar, = 1.4 mM,
ao = 3.82 uM, Bgs = 7 mM, Brr = 10 mM, Byo = 14.37 uM, and by setting 80 = 0, as well. Now,
by replacing these parameters in (6¢), (7a) and (7a), we obtain the following fitness for phenotypes H©
and G°:

Fao (z(t)) = 0.21, fos (x(t)) = 0.66, Va(t) € A. (29)

Thus, the metabolic strategy of G¥ is strictly superior than H, regardless of the state of the population.

In other words, strategy H is strictly dominated by G*°. Therefore, under normoxic conditions (recall
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that the Warburg effect occurs under normoxic conditions), a population of cells that express phenotype
HO succumbs to any invasion by G°, regardless of whether the lactate is toxic or not.
We now examine the quantity of lactate that R” needs to get a higher fitness than HC; i.e. we want

to know the concentration given by (3), which satisfies:

fre (®(1)) = fro (x(t)) . (30)

By replacing the previous parameters in (30), we obtain that lactate levels have to meet sz ((t)) > 2.66
mM. Therefore, phenotype R needs at least 2.66 mM of lactate to get a higher fitness than H©.
Recall that lactate concentrations in colorectal liver are about 1.4-2 mM and 8.7-14,3 mM in healthy
and cancerous tissues, respectively. Also recall that in general, lactate concentrations in normal and
tumour tissues are 1.5-3 mM and 10-30 mM, respectively (see e.g. [4]). Other references as [96] even
observe tumours with lactate concentrations up to 40 mM. Therefore, in a tumour environment and under
normoxic conditions, phenotype R has enough lactate to get a higher fitness that H©.

In conclusion, lactate toxicity does not seem to be a determining factor in the aggressiveness of
a tumour, since malignant phenotypes have sufficient resources under normal conditions to lead the

population to collapse in the event of any mutation.

5.2. Optimal DDQN based control solution

In this section we cover the optimal therapy solutions obtained with DDQN.

Fig. 5 shows the optimal DDQN solutions for the tumour state space. Concretely, Fig. 5a and Fig. 5b
represent the optimal therapeutic policies on the monomorphic populations found in colorectal cancer in
Subsection 5.1.1, while Fig. 5c¢ and Fig. 5d refers to the optimal policies on the polymorphic populations
covered in Subsection 5.1.2. Recall that parametrization is collected in Tables 1 and 2 with the action
space defined in Table 3. The white zone located to the left of the simplex represents X.,q1, with all
those terminal states where we assume that therapy fails. On the contrary, the area of the same color
that is on the right corresponds to the terminal states where the therapy is successful, i.e. Xepg2. The
black lines in Fig. 5 illustrate tumour dynamics subject to DDQN’s optimal policy. One can get a better
idea of the effect of this therapy, by comparing these trajectories with therapy-free tumour dynamics,
i.e. Fig. ba vs. Fig. 3a, Fig. 5b vs. Fig. 3b, Fig. 5c vs. Fig. 4a and Fig. 5d vs. Fig. 4a. Based on
this comparison, it can be verified that optimal therapy leads tumour dynamics to the set of safe states,
Xendz-

According to Fig. 5, actions 7, 8 and 9 are the only which take part in the optimal policies obtained
with DDQN, i.e., the actions from 1 to 6 are not part of any optimal therapy. This result can be useful
in the design of real therapies, because it suggests a significant simplification of the dose combinations to
be used. Furthermore, the dose combinations are always the same, regardless of whether the tumour is
monomorphic or polymorphic, which suggests a possible standardization of the inhibitor cocktails to be

used.
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Figure 5: DDQN'’s optimal therapeutic policies (the optimal solution for the entire state space of the tumour). (a),(b),(c)
and (d) shows the DDQN’s optimal targeted therapy for tumour dynamics observed in Fig. 3a, 3b, 4a and 4b, respectively.
Settings in (a) ar, = 1.7 mM, by, = 9.8 mM xéls Settings in (b) ar, = 2 mM, by, = 9.5 mM zaé Settings in (¢) ar = 1.7
mM, by, = 21.3 mM acc_;}g Settings in (d) ar = 1.7 mM, by, = 28.3 mM xaé Settings in (a),(b),(c),(d) as = 17.1 mM,
Bgs =5 mM, Bpr = 6.5 mM, 60 =0.01 M~ (the rest of parameters are included in Tables 1 and 2).

Interestingly, all of the optimal policies in Fig. 5 target G° with the maximum tolerated genistein
dose. In contrast, phenotype R’ is never targeted with the maximum tolerated AR-C155858 dose. These
results suggest that DDQN learns that R™ can be attacked indirectly through G*° (remember that R
receives support from lactate released by G*). The maximum dose of AR-C155858 is never administered
to patients, as a result of this reason and in order to minimize the costs associated with the therapy’s
toxicity.

Table 4 summarizes the average costs of each of policies represented in Fig. 5. These costs are
the result of averaging 512 different trajectories with uniformly distributed initial states in the non-
terminal state space, i.e., each initial state is obtained by sampling the space AM _x, o~ Xoae =
{x(t) € AMI 2(t) & Xepar, ®(t) & Xengz} uniformly. Recall from Subsections 5.1.1 and 5.1.2 that lactate
contributes to the heterogeneity of phenotypes in the cell population. We also suggest that heterogeneity

may increase tumour aggressiveness and complicate treatment. Now, Table 4 provides therapeutic costs
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that increase from the dynamics observed in Fig. 5a to Fig. 5d. Consequently, lactate is a reliable

indicator of poor prognosis and high therapeutic costs.

Optimal therapy

Fig. 5a Fig. 5b Fig. 5¢c Fig. 5d

DDQN Cost 396.10 424.36 504.51 556.67

Table 4: Average costs of the optimal therapeutic policies represented in Fig. 5.

5.2.1. Optimal DDQ@N therapy vs conventional therapy

This subsection aims to compare DDQN-based therapies with other more conventional approaches.

Suppose that in a conventional therapy, the doctor decides to apply the following protocol:
KL if xgs < g, (31a)
ay =
ag otherwise . (31b)

According to Tables 2 and 3, the therapy defined by (31a) and (31la) involves attacking the dominant
tumour phenotype with the corresponding maximum tolerated dose, while the secondary phenotype is
attacked with the minimum tolerated dose. In this way, the aim is to attack both tumour phenotypes at
the same time, avoiding the excessive costs of applying the maximum tolerated doses at the same time.

Fig. 6 and Table 5 show the results in the case that no therapy is applied to the patient, in the case
of implementing the conventional therapy defined above and in the case of using the optimal therapy ob-
tained with DDQN. All the trajectories start from the same initial state (zgzo,zgs,zre) = (0.3,0.6,0.1).
In any case, the absence of treatment implies the loss of the patient in two iteration steps. Note that
conventional therapy also fails in the cases with more aggressive tumours, represented by Fig. 6¢ and 6d.
Recall again, as discussed in Subsection 5.1.2, that Figs. 6¢ and 6d represent scenarios with polymorphic
equilibria that are generated due to the presence of high lactate concentrations. The fact that conven-
tional therapy succeeds in the cases represented by Figs. 6a and 6b and fails in the cases of Figs. 6¢ and
6¢ is indicative that lactate contributes to tumour aggressiveness. For this reason, conventional therapy

fails earlier (uses fewer steps in Table 5) in the scenario represented by Fig. 6d.
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Figure 6: Illustration of tumour dynamics under no therapy, conventional therapy and DDQN’s optimal therapy. No therapy
always fails. Conventional therapy succeeds in (a) and (b), but fails in more aggressive tumours (¢) and (d). DDQN’s
optimal targeted therapy always succeeds. Settings in (a) ay, = 1.7 mM, by, = 9.8 mM z S Settings in (b) ar, = 2 mM,
br, =9.5 mM CEGS. Settings in (¢) ar = 1.7 mM, by, = 21.3 mM IGS. Settings in (d) ar, = 1.7 mM, by, = 28.3 mM azgs
Settings in (a),(b),(c),(d) ag = 17.1 mM, Bgs = 5 mM, BrL = 6.5 mM, 650 = 0.01 M™! (the rest of parameters are
included in Tables 1 and 2).

Fig. 6 shows that DDQN recovers the patient in all scenarios. Furthermore, Table 5 indicates lower
therapeutic costs with DDQN, even though it approaches terminal failure states and employs a greater
number of steps in patient recovery. DDQN would have obtained straighter trajectories towards the safe
terminal state, without passing close to the failure terminal state, in the case of assigning greater relative
weight to the penalty of treatment duration (parameter o) over the toxicity of drugs (parameters o,

and u¢® for allm e M, k€ K ).

5.2.2. Validation of DDQN solutions with HJB

In this subsection we validate the optimal therapy solutions obtained with DDQN by comparing it
with the solution provided by HJB.

In Fig. 7, we can compare the performance of DDQN vs. HJB. Figs. 5a and 7a respectively show the
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Fig. 6a Fig. 6b Fig. 6¢c Fig. 6d

steps cost steps cost steps cost steps cost
No therapy 2 1,000.02 2 1,000.02 2 1,000.02 2 1,000.02
Conventional therapy 52 625.04 53  637.06 34  1,504.66 24 1,366.46
DDQN therapy 62 545.24 58 587.16 62 705.24 66 773.32

Table 5: No therapy vs conventional therapy vs DDQN therapy: Iteration steps and therapeutic cost.

optimal policies obtained by DDQN and HJB, under the tumour dynamics represented in Fig. 3a. In
Fig. 7b, we compare the therapeutic costs of 512 different trajectories. The initial state of each trajectory
has been obtained by uniformly sampling the non-terminal state space. As it can be seen in Fig. 5a and
Fig. 7a, the optimal therapies obtained with DDQN and HJB are apparently very different. Concretely,
the optimal policy provided by HJB is much more complex, since it uses a significantly higher number of

actions than DDQN.
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Figure 7: Optimal therapeutic policies: HJB vs. DDQN under tumour dynamics observed in Fig. 3a. (a) HJB’s optimal
targeted policy. HJB has an average cost of 394.37 compared to 396.10 (see Table 4) for DDQN. (b) Trajectory costs
obtained with DDQN and HJB. Welch’s t-test p-value: 0.87, thus there is no evidence that HJB and DDQN trajectory

G
M~ (the rest of parameters are included in Tables 1 and 2).

costs are different. Settings: ay, = 1.7 mM, by, = 9.8 mM zx é, as = 17.1 mM, B5s =5 mM, Brr = 6.5 mM, 0,0 = 0.01

However, the results observed in Fig. 7b suggest that both policies are quite similar from the perspec-
tive of therapeutic costs. The average cost over the 512 trajectories are 396.10 and 394.37 for DDQN and
HJB, respectively. Therefore, in this case, the HJB policy gets an improvement of 0.4 % over the DDQN
policy, at the cost of increasing the complexity of the therapy, which can be a problem in the case of a
real implementation.

Fig. 7b shows some trajectories where the cost obtained by HJB is greater than DDQN. This is surely
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due to slight mismatches in the numerical approximations and interpolations applied by BocopHJB. In
any case, a Welch’s t-test on the samples in Fig. 7b provides a very high p-value equals to 0.87. Therefore,
there is no evidence to support that the policies shown in Figs. 5a and 7a present different average costs,

although visually they do not look alike. Very different policies can give similar cost results.

6. Conclusion and future works

Aerobic glycolysis has been considered for a long time as an inefficient metabolic disorder in obtaining
energy for the cell development. The lactate generated in aerobic glycolysis has also been considered as a
by-product or metabolic waste with no apparent utility. However, nowadays it is known that lactate can be
used as an extra energy source by some cellular phenotypes to proliferate. In this way, from a evolutionary
perspective, glycolytic metabolism may make sense even under normal oxygen conditions, since it allows
to increase the polymorphic heterogeneity of tumours and thus favour their aggressiveness. In this work, a
simple model based on EGT has been proposed to represent this complex metabolic alteration, a.k.a. the
Warburg effect, which is common to many types of cancer. This model has been adequately parametrized
to reproduce the clinical observations obtained from different studies on colorectal cancer and other more
aggressive tumours. This model has also been used as a training scenario for control systems based on
recent deep learning algorithms.

In this work, we propose the first optimal therapy based on experimental tumour growth inhibitors,
which have been obtained through the efficient implementation of control systems based on deep learning.
The results have been compared with the solutions provided by HJB. The conclusion is that the policies
obtained with HJB slightly outperform DDQN, at the cost of increasing the complexity of therapeutic
routines. In real life, the implementation of simpler routines such as those obtained with DDQN may
make more sense, although these are suboptimal compared to those obtained with HJB. Furthermore,
solving HJB is conditioned on an exact knowledge of the system to be controlled, which is infeasible in
most of the real-life cases. DDQN does not need to know the differential equations that govern tumour
dynamics, but it requires a sufficiently reliable scenario to train. The quality of the scenario used in the
training of any reinforcement learning algorithm is key to get realistic optimal policies. However, in our
case, the implementation of a realistic scenario requires many clinical observations that provide clear and
precise information on how the tumour evolves over time. For this reason, in future work, we plan to
refine the model presented in this paper, as the literature provides chemical, biological, and medical data
that allow a more accurate understanding of tumour dynamics.

Determining the system state is also an important detail to consider. In this paper, we have considered
that the state is a vector with components that represent the relative frequency of the phenotypes
expressed by the cells. A Markov decision process can be used to model tumour dynamics in this case,
since the state of the system is observable. Nevertheless, in many real-world applications, the state cannot
be directly observed or accessible, and estimates may be affected by noise. This may require posing the

problem from the perspective of a partially observable Markov decision process. Deep recurrent Q-
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networks [97], an extension of DQN with recurrent networks, could also be useful to address these types
of problems.

In this paper we have modelled tumour dynamics with deterministic differential equations. This
approximation is useful to address general or average dynamics. However, tumour dynamics may also be
associated with stochastic components. A natural way to address the problem of obtaining therapeutic
treatments in this type of systems would be by implementing stochastic optimal controls.

In conclusion, we highlight that the results obtained in this paper on optimal policies are in silico.
Furthermore, the present study has the limitations described above. In this regard, the results derived
from these therapies should be viewed with caution since much work remains to be done in order to

obtain optimal treatments against cancer.
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Appendix A. Obtaining RE from expression (8)

Let N € R>( denote the size of a cell population. Recall from Section 2.5, that N,, € >¢ denotes
the the number of cells that express phenotype m € M. Then, the relative frequency of any phenotype,
introduced in Section 2.1, is given by:

Ny (t)
N(t)

T (t) 2 Vm € M. (A1)

The derivative of (A.1) with respect to time results:

Ny (6)N(t) — N (H)N(2)

i = . A2
The derivative of N(¢) with respect to time also satisfies:
N2 D Nu(b). (A.3)

neM
By replacing (A.3) in (A.2):

Nin ()N (t) = Non(t) 3 e g V(1)
N2(t)

() = ¥m € M. (A4)

Equation (8) can be expressed as follows:
N, () = N (t) fr (2(t), u(t)) ,¥Yn € M. (A.5)

By replacing (A.5) in (A.4):

i) = N0 (OO ) Brcps MO (SO0 g (n

Finally, expression (9) can be directly obtained by replacing N, (¢t) = N(t)z,(t),Vn € M, from (A.1), in
(A.6).
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A model based on evolutionary game theory is proposed to represent the dynamics of
cell populations subject to the Warburg effect. This model reproduces by computer
simulation some clinical results observed in colorectal liver metastasis and other even
more aggressive cancers.

In silico results with optimal targeted therapies using Double Deep Q-networks is
proposed. These therapies seek to attack cells that express specific cancerous
phenotypes, with the combination of tumor growth reversible inhibitors in different
doses. These therapies also consider the duration of treatment, drug toxicity,
contraindications and harmful side effects in order to guarantee the patients’ quality of
life.

Optimal therapies obtained with Double Deep Q-networks are validated with the
solutions of the Hamilton-Jacobi-Bellman equation.
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