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DDQN-based optimal targeted therapy with reversible inhibitors to combat
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ract

ver the Warburg effect with a three–component evolutionary model, where each component repre

a different metabolic strategy. In this context, a scenario involving cells expressing three differen

types is presented. One tumour phenotype exhibits glycolytic metabolism through glucose uptak

actate secretion. Lactate is used by a second malignant phenotype to proliferate. The third pheno

represents healthy cells, which performs oxidative phosphorylation. The purpose of this model is t

better understanding of the metabolic alterations associated with the Warburg effect. It is suitabl

roduce some of the clinical trials obtained in colorectal cancer and other even more aggressive tu

s. It shows that lactate is an indicator of poor prognosis, since it favours the setting of polymorphi

ur equilibria that complicates its treatment. This model is also used to train a reinforcement learn

gorithm, known as Double Deep Q-networks, in order to provide the first optimal targeted therapy

on experimental tumour growth inhibitors as genistein and AR-C155858. Our in silico solution

es the optimal therapy for all the tumour state space and also ensures the best possible quality o

r the patients, by considering the duration of treatment, the use of low-dose medications and th

nce of possible contraindications. Optimal therapies obtained with Double Deep Q-networks ar

ted with the solutions of the Hamilton-Jacobi-Bellman equation.

ords: The Warburg effect, Optimal inhibition targeted therapy, Genistein, AR-C155858, Double

Q-Networks.

troduction

etabolism can be understood as a cell strategy for the production of the energy that is needed t

e and proliferate. Healthy cells obtain energy from glucose through two major metabolic pathway

n as glycolysis and oxidative phosphorylation (OXPHOS) [1]. In glycolysis, cells consume 2 molecule

nosine triphosphate (ATP) and obtains 4 molecules of ATP, by breaking down one glucose molecul

wo pyruvate molecules [2]. Colloquially speaking, an ATP molecule can be understood as th

ntary form of energy for the cell. Thus, during glycolysis, cells obtain an average energy of

molecules per glucose molecule. In OXPHOS, pyruvate enters the citric acid cycle (Kreb’s cycle

ail address: sanz_nogales@yahoo.es (Jose M. Sanz Nogales)
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in the mitochondria and 24–28 ATP molecules are generated from one glucose molecule converted into
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ate (see Chapter 12 in [3]). Glycolysis is an anaerobic metabolic pathway, but OXPHOS necessarily

res oxygen. Under normal oxygen concentration, normoxic conditions, healthy cells make use of both

olic pathways and obtain a net yield of 26–30 ATP molecules per glucose molecule. Only unde

ia, such as intense physical exercise conditions, do cells shift their metabolism from OXPHOS

ds anaerobic glycolysis in order to cover the punctual energy demand that occurs when the oxygen

rce.

he Warburg effect is a metabolic alteration, known as aerobic glycolysis, where tumour cells avoid

OS and base their entire metabolism on glycolysis even in normoxic conditions. As a reminder

ntional metabolism (glycolysis plus OXPHOS) produces up to 28 ATP molecules under normoxi

tions, whereas glycolysis produces only 2 ATP molecules. It is still unclear why tumour cells prefe

nefficient metabolism. It is thought that tumour cells consume large amounts of glucose, possibly in

to compensate for energy deficiencies, and ferment lactic acid as well. Lactic acid (or simply lactate

ibutes to the acidification of the environment, which is harmless to tumour cells but detrimenta

althy ones [4–7]. In addition, it is now known that lactate, long considered a waste product o

lytic metabolism, is used by malignant cells as an extra energy fuel (see e.g. [8, 9]) to proliferate and

duce. Uncontrolled cell growth also leads to vascularization problems for healthy cells. In contrast

nant cells are able to overcome these vascularization problems through sustained angiogenesis. In

ined angiogenesis, also considered in [10, 11] as a hallmark of cancer, some tumour cells secret

lar endothelial growth factor to stimulate the growth of nearby blood vessels, which ensures th

uous supply of nutrients and oxygen. In addition, access to the bloodstream allows tumour cell

ablish distant niches [12, 13], to later reach other organs, thus generating secondary tumours in th

of metastases [14]. Therefore, the Warburg effect can be understood as a very complex evolutionary

ss, which alters the environmental conditions to provide competitive advantage to malignant cells

over, the Warburg effect triggers other unwanted alterations, such as sustained angiogenesis and

tasis. Even though the Warburg effect is not universal [15], it has been observed in a wide rang

cer types, including colorectal cancer [16–18], glioblastoma [19, 20], bladder [21], kidney [22, 23]

t [24, 25], melanoma [26, 27], pancreatic cancer [28–30], lung [31, 32], prostate [33], thyroid [34, 35]

[36–38] and stomach [39–42]. All of these reasons contribute to our belief in this paper that th

ation of the Warburg effect, or at the very least, its mitigation, may be relevant to the cure o

r.

om seminal work [43], Evolutionary Game Theory (EGT) has gained much popularity in cance

ch, due to its ability to model cell populations that express different phenotypes, and that compet

each other according to the metabolic strategy that they show. The replicator equation (RE) i

bly the most widespread deterministic dynamics in EGT, which has also been used in [44–47] t

complex interactions that take place in a cell population subjected to the Warburg effect. RE

that the growth rate in the number of types that express a strategy depends on the fitness o
2
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such strategy within the population. In this paper we propose a three component evolutionary model,
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ponent per each metabolic strategy (glycolytic, non-glycolytic and oxidative), whose dynamic i

ned by RE. In our approach, cells with glycolytic strategy express phenotypes that uptake glucos

ecrete lactate. In contrast, non-glycolytic cells simply absorb lactate, while oxidative cells perform

ntional phosphorylation with oxygen. Diffusible factors as glucose, lactate and oxygen stimulat

inear cell responses (see e.g. [48]) when their ligands bind into the cell receptors . This stimulation

sidered in RE through the fitness of each metabolic strategy. Similarly to [49–52], here we conside

ichaelis–Menten equation as a plausible way to model the fitness.

he vast majority of studies focused on EGT propose therapeutic treatments based on radiotherapy

otherapy and immunotherapy. Experimental treatments based on tumour growth inhibitors hav

ed much less attention. In contrast to cytotoxic treatments, inhibitors target to cells that expres

c phenotypes, by preventing the ligands of some diffusible factors, such as glucose and lactate

binding the cell receptors. In this way, inhibitors seek to cancel cellular responses, thus avoiding th

opment of malignant phenotypes. In this paper, we differentiate two types of inhibitors: competitiv

on–competitive inhibitors. Competitive inhibitors compete with the diffusible factors for bindin

he cell receptors. In this way, a cell receptor cannot bind a diffusible factor when is blocked by

etitive inhibitor. In contrast, non–competitive inhibitors block the cell responses by bidding int

gands of the diffusible factors. The ligand of a diffusible factor cannot bind a cell receptors once it i

d to the inhibitor. To the best of our knowledge, [44] was the first to mathematically formulate th

tial effect of these drugs in cancer therapies. However, we miss the design of effective therapeuti

ent based on these drugs. In this paper, we propose the first optimal targeted therapy based on

mbination of experimental tumour growth inhibitors to annul the Warburg effect. We also provid

co results with application to colorectal cancer and other more aggressive tumours.

andard cancer treatment consists of alternating drug sessions at Maximum Tolerated Dose (MTD

ed by time off (drug holidays). This approach seeks to kill as many cancer cells as possible with

, while controlling the toxic burden of drugs and side effects through rest days. However, MTD

succeeds in eradicating therapy-sensitive tumour cells, thereby providing competitive advantage t

ant cells [53]. In such a case, it may occur an uncontrolled growth of tumour cell whose traits ar

ant to therapy (competitive release [54]). To avoid this, the doctor can change the medication t

k the resistant cells, producing a rebound of the cells sensitive to the previous medication. Thi

ing into a vicious circle that is not recommended, since it may lead to disease chronification. On

ther hand, it can also happen that sensitive traits recover during drug-free times. In this othe

the physician may reduce resting times, thus increasing the toxic effect of the drugs in the patient’

In this paper, we think that formulating therapy programming as if it were an optimal contro

em can be a much better alternative to the conventional one. The general idea is to drive tumou

ics to a safe state, which implies the cure of patients, or at least their long-term survival, at th

t possible cost. With this purpose, the physician has to decide the dose concentration of each drug
3
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which needs to be supplied according to the tumour state. This approach results more attractive than
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TD-based alternative, since the optimal control problem allows doctors to act actively against th

ur. In other words, optimal control transforms the therapy problem into a Stackelberg Evolutionary

[55], where the physician is the leader who anticipates the tumour state and acts as a rationa

r seeking to minimize the cost of an objective function.

he main concern in any therapy is to remove the presence of malignant cells. However, meeting thi

tive does not necessarily guarantee the safeguarding of the patients’ life or the improvement of thei

y of life. It may also be relevant to consider other factors such as the duration of the treatment

xicity of the drugs, the intensity of adverse side effects, the patient’s pathologies, age, weight, etc

these factors make it difficult to formulate a problem aimed at providing the best possible therapy

ermore, in case of formulating such a problem, there are no guarantees of finding the optima

on (or at least a good enough one) due to possible non-convexities. We can find very recent effort

in silico results in the field of optimal cancer therapy in [56–60]. The authors of [56–58] achiev

al chemotherapy and immunotherapy by applying Pontryagin’s maximum (or minimum) principle

arly, [59] applies Forward Backward Sweep, an algorithm based on Pontryagin’s maximum principle

liver optimal doses of abiraterone in prostate cancer. Importantly, Pontryagin’s maximum principl

des necessary conditions for optimal control. However, these conditions are not sufficient, unless th

em meets certain convexity conditions. Convexity limits the formulation of a general therapeuti

al control problem that may be more effective. In contrast, authors in [60] propose a bang-ban

ol by solving the Hamilton-Jacobi-Bellman (HJB) equation of a tumor dynamics, subjected to a cos

ion that penalizes the duration of the treatment, the delivery of chemotherapy doses and specifi

nal states. Different from Pontryagin’s maximum principle, the HJB equations provide necessary

ufficient conditions for an optimum, regardless of the problem’s convexity. However, HJB require

t knowledge of tumour dynamics equations. This condition can be relaxed by applying model

ontrollers, which do not require explicit knowledge of the environment or system. Several of thes

ollers have already been used in the treatment of cancer (see e.g. [61–63]), but we miss quantitativ

s to show their effectiveness as compared to the optimal solution.

this paper, we present the best therapy obtained with Double Deep Q-Network (DDQN), which

e of the most popular model–free algorithms. Far from conventional approaches, in this articl

not propose the implementation of optimal therapies based on chemotherapy, immunotherapy o

therapy, but rather on experimental tumor growth inhibitors. Our solution is more complete and

lex than a bang-bang control, since it allows the combination of different drugs in different doses

dition, our solution is targeted therapy because it allows physicians to attack several Warburg effec

toms simultaneously or separately. Our solution is complete because it applies to the entire problem

space. We validate the resulting therapeutic solutions by comparing them with those obtained

HJB, because our cost function is non-convex to consider the toxicity of the treatment, possibl

aindications, and adverse side effects in a more general way than is usually done in the literature.
4
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This paper is structured as follows. Section 2 presents a novel three-component evolutionary model
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resent the Warburg effect. The effect of inhibitors over malignant phenotypes is also considered in

ection. Section 3 formally introduces the problem of optimal therapy. In Section 4, the problem

timal therapy is restated from the perspective of Markov decision processes (MDP). The use o

N to solve this problem is introduced and justified. In this section, we also introduce the solution

ded by HJB. This section ends with the parametrization of the optimal control problem and with

arametrization of most of our tumour dynamics. In Section 5, we discus the results of our evolu

ry tumour growth model and the optimal therapy obtained with DDQN. Concretely, it explores th

tions that favour the establishment of polymorphic equilibria and discuss whether lactate toxicity

a relevant role in tumour development. This section also compares the performance of DDQN with

more conventional therapeutic strategies. It shows the solution with the optimal targeted therapy

full state space, which is provided by DDQN. This section ends by comparing the performance o

N with HJB in a specific case. Conclusions are presented in Section 6.

he model

umour state

he tumour state or state of the system refers to the diversity of the phenotypes of a cell population

t L , {S,L,O} denote the set of diffusible factors S,L, and O, which represent glucose, lactate

xygen, respectively. Let GS denote a glycolytic phenotype with anaerobic metabolism. These cell

me glucose through glucose transporters (GLUT), and secrete lactate as an end product, regardles

oxygen concentration that is available in the cell population. Let RL denote a phenotype which

bs lactate in presence of monocarboxylate transporters (MCT). These cells uptake lactate as an

energy fuel. Let HO denote a normal phenotype which uptakes oxygen. These cells base thei

olism on conventional oxidative phosphorylation. Let M , {GS , RL, HO} denote the set of al

types expressed by the cells. This set includes the metabolic strategies which are available in th

opulation. Let xm(t) denote the relative frequency of phenotype m ∈ M in the cell population

tate of the population is given by:

x(t) , (xm(t))m∈M ∈∆|M|, (1

∆|M| , {x(t) ∈ <|M| : 0 ≤ xm(t) ≤ 1,
∑

m∈M xm(t) = 1} denotes the simplex of (|M| − 1

sions in <|M|.

iffusible factors

he diffusible factor concentrations stimulate the proliferation of the phenotypes. Let a , (a`)`∈L ∈
denote the growth factor concentrations in normal conditions. This vector represents externa

rces provided by the host. Let bL ≥ 0 denote the amount of lactate secreted by each cell tha

sses GS . We introduce a definition describing the growth factor concentrations.
5
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Definition 1. The expected growth factor concentration which stimulates to phenotype m ∈M, denoted

dm : ∆|M|
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7→ <>0, is defined as:

dGS (x(t)) , aS , (2

dRL (x(t)) , aL + bLxGS (t), (3

dHO (x(t)) , aO. (4

pression (2) shows the expected glucose concentration which stimulates to the growing of GS

ssion (3) depicts the lactate concentration which stimulate to RL. Recall that aL in (3) is th

e concentration which is present in the cell population in normal conditions. Lactate is uniformly

d in the cell population, and bLxGS expresses in (3), the part of lactate which is produced by GS

hat stimulates to RL. Equation (4) indicates the expected oxygen concentration which stimulate

.

eversible inhibitors

e now introduce the concentration of therapeutic drugs in the host’s organism. Let C and C̄ denot

et of competitive and non-competitive inhibitors, respectively. Let K , C ∪ C̄ denote the set o

ible inhibitors, which meets C ∩ C̄ = . Let <≥0 denote the set of non-negative real numbers

mk(t) denote the concentration of inhibitor k ∈ K, which targets to phenotype m ∈ M. Th

ntration of drugs is given by:

u(t) , (umk(t))m∈M,k∈K ∈ <
|M||K|
≥0 . (5

ssion (5) can be understood as the control action that indicates the dose concentration of inhibitor

d by the physician.

itness and lactate toxicity

tness refers to the benefit obtained by phenotypes, when diffusible factors ligands bind to cel

tors. Fitness determines the reproductive capacity of phenotypes. Usually, diffusible factors hav

bolic effects on the fitness of phenotypes. Reversible inhibitors may neutralize the fitness in tw

ent ways. Competitive inhibitors block cell receptors where diffusible factors bind. Non-competitiv

itors neutralize the cellular response when they bind to diffusible factor ligands. Let βm > 0 denot

ffinity of phenotype m ∈ M for the diffusible factor that stimulate it. Let βmk > 0 denote th

itory constant. We first introduce a definition with the fitness of phenotypes GS and RL.

ition 2. The fitness of glycolytic and abnormal oxidative phenotypes, denoted fm : ∆|M|×<|M||K|≥0 7→
6
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<>0, is defined for all m ∈M,m 6= HO, as follows:

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fm (x(t),u(t)) ,




1

1 +

(
βm

dm (x(t))

)(
1 +

umk(t)

βmk

) if k ∈ C, (6a

1(
1 +

βm
dm (x(t))

)(
1 +

umk(t)

βmk

) if k ∈ C̄, (6b

1

1 +
βm

dm (x(t))

otherwise. (6c

pression (6c) is a normalized version of the Michaelis–Menten equation [64]. This equation rep

ts the fitness of phenotypes in absence of inhibitors, and shows a hyperbolic shape which is linea

the diffusible factor concentration is very low. Interestingly, reference [65] predicts GLUT1 (glucos

porter 1) kinetics with a normalized version of the Michaelis–Menten equation and [66] states th

for MCT1 (monocarboxylate transporter 1) kinetics. Thus (6c) seems to be a plausible function

e fitness of phenotypes GS and RL. Term βm, affinity in (6a) – (6c), represents the diffusibl

concentration which makes m ∈ M responds with half the maximum. Equations (6a) and (6b

ccepted in [64, 67–72] as formal expressions that characterize the impact of reversible inhibitors

ssion (6a) depicts the fitness of phenotypes in the presence of competitive inhibitors. Competitiv

itors reduce the affinity from βm in (6c) to βm(1 + umk(t)/βmk) in (6a). Expression (6b) indicate

tness of phenotypes in the presence of non-competitive inhibitors. This class of drug reduces th

um fitness from 1 in (6c) to βmk/(umk(t) + βmk) in (6b).

0 5 10 15 20 25 30
dm

0.0

0.2

0.4

0.6

0.8

1.0

f m

umC = 0.0
umC = 0.5
umC = 1.0
umC = 1.5

(a)

0 20 40 60 80 100
dm

0.0

0.2

0.4

0.6

0.8

1.0

f m

umC = 0.0
umC = 0.5
umC = 1.0
umC = 1.5

(b)

1: Cellular fitness vs. dose concentration of reversible inhibitors. Settings: βm = 1, βmC = βmC̄ = 0.5. (a) Effect o

titive inhibitors on cellular fitness. (b) Effect of non-competitive inhibitors on cellular fitness. Competitive inhibitor

he affinity to the right while non-competitive inhibitors reduce the maximum fitness. In the presence of inhibitors

r phenotypes need more diffusible factor to keep the same fitness.

t `sup > 0 denote the toxicity threshold for lactate. Let θm > 0 denote the impact of lactate on

type m ∈ M. Similarly to (6a)–(6c) and without loss of generality, the fitness of HO is a function

domain ∆|M| ×<|M||K|≥0 , which is defined as:
7
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Definition 3. The fitness of conventional oxidative phenotypes, denoted fm : ∆|M| × <|M||K|≥0 7→ <, is
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d for all m ∈M,m = H , as follows:

fm (x(t),u(t)) ,





1

1 +
βm

dm (x(t))

if dRL (x(t)) < `sup, (7a

1

1 +
βm

dm (x(t))

− θm (dRL (x(t))− `sup) otherwise . (7b

eference [73] states that healthy phenotypes respond with a Michaelis–Menten function. Similarly

ssion (7a) provides the fitness of HO under normal conditions, i.e. when the acidity of the envi

ent does not prevent or hinder the normal development of this phenotype. Scalar `sup in (7a) and

can be understood as a tolerance threshold of HO to lactate. Lactate concentrations higher than

enalize the fitness of HO with an extra cost θHOdRL (x(t)) in (7b). This cost is only considered in

tness of cells with conventional oxidative metabolism, because authors in [4–7] suggest that acidosi

by glycolysis may result toxic to healthy cells, and harmless to cancerous cells. Term θm`
sup in (7b

des a smoother and more natural response in the presence of lactate, by avoiding the discontinuity

L (x(t)) = `sup.

ell population dynamic

E is the deterministic differential equation most extended in EGT. Let Nm ∈ <≥0 denote the numbe

ls that express phenotype m ∈M. RE states that the per capita growth rate in the number of cell

xpress a phenotype is equal to the fitness of the phenotype [74]:

Ṅm(t)

Nm(t)
, fm (x(t),u(t)) ,∀m ∈M. (8

is way, RE proposes the reproduction and survival of the fittest types. However, conventional RE

not include the effects of external agents to the population, and states that fitness only depends on

x(t). In coherence with previous subsections, expression (8) also includes the effect of therapeuti

s through drug concentrations represented by u(t). Let ẋm denote the dynamic of m ∈ M tha

es RE. A straightforward calculus allows to express (8) in relative frequencies (see Appendix A):

ẋm(t) , xm(t)

(
fm (x(t),u(t))−

∑

n∈M
fn (x(t),u(t))xn(t)

)
,∀m ∈M. (9

tion (9) states that the growth rate expressed in relative frequency of a phenotype m ∈M is given

e difference between its fitness fm (x(t),u(t)), and the averaged fitness of the population:

F (x(t),u(t)) ,
∑

n∈M
fn (x(t),u(t))xn(t). (10

l the per capita growth rate remains being (8). Thus (8) and (9) are two ways of expressing th

idea (the survival and reproduction of individuals depend on their fitness within the group), bu

a map Ṅm : <|M| ×<|M||K|>0 7→ <, while (9) is a map ẋm : ∆|M| ×<|M||K|>0 7→∆.
8
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It is well known that (9) is the most common way to express the RE (see e.g. [75, 76]), since it provides
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ic responses which are bounded on simplex ∆. This property results interesting, specially in thos

where the difference in the number of individuals which express each of the types is high.

he problem

this section we present the problem of optimal therapy.

t σ be a positive or null scalar, which penalizes the duration of treatment. Let umax
mk ≥ 0 denot

aximum tolerated concentration of inhibitor k ∈ K, which targets to m ∈ M, and that is set a

cian discretion, according to the characteristics of the patient (age, weight, medical history, etc.

mk be a positive scalar, which weights the relative toxicity of mk – inhibitor with respect to others

sed to consider medical contraindications or side effects of some drugs over others. Let xmin
HO ∈ (0, 1

e the minimum allowable relative frequency for phenotype HO, which is compatible with the lif

patient. Lower relative frequencies imply the death or the administration of palliative care to th

t. Let xmax
HO ∈ (0, 1) denote the threshold that xHO has to overcome in order for the patient to b

. We now formally introduce the cost function of the problem:

ition 4. The cost function, denoted J : ∆|M| ×<|M||K|≥0 7→ <>0, is defined as follows:

J (x(t),u(t)) , K(x(t)) +

∫ tf

t0

L (x(t),u(t)) dt, (11

that:

K(x(t)) ,
{∞ if xHO (tf ) < xmin

HO , (12a

0 otherwise, (12b

L (x(t),u(t)) , h(x(t)) + e(u(t)), (13

h(x(t)) ,
{

0 if xHO (t) > xmax
HO , (14a

σ otherwise, (14b

e(u(t)) ,
∑

m∈M,k∈K
σmk

umk(t)

umax
mk

. (15

hen K(x(t)) is a terminal cost function that severely penalizes therapy failure. The second term in

s the cost-to-go function or the trajectory cost from state x(t0) to x(tf ), and is used to evaluat

ay by which a final state is reached from an initial state. Concretely, h(x(t)) increases the cost o

eatment during the time it takes place, while e(u(t)) regulates both the doses and the toxicity.

t T > 0 denotes the time that treatment lasts. The goal consists on finding the optimal contro

py u∗ (x(t)), which minimizes the cost function (11) from x(t = 0) to x(t = T ):

u∗ (x(t)) , arg minJ (x(t),u(t)) ,

s.t. ẋm(t) = xm(t) (fm (x(t),u(t))− F (x(t),u(t))) ,∀m ∈M.
(16
9
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In the next section, we indicate how to solve (16) for all the state space of the problem.
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aterials and methodology

ouble Deep Q-Network

this subsection we focus on solving (16), with a reinforcement learning (RL)-based technique called

le Deep Q-Network (DDQN).

t us frame the problem described in Section 3 in the context of Markov decision process (MDP)

DP is an extension of Markovian processes, where the agent (a physician in our case) takes action

ntially (by administering different concentrations of competitive and/or non-competitive inhibitors

ive the system (the cell population) to a specific state (state involving cure of the patient). A

te-time MDP can be defined with a tuple 〈X ,A,P,R〉, where:

X is the set of states.

A is the set of actions.

p : X ×A → [0, 1] is the transition probability function, where p (xt+1|xt, at) denotes the probability
of getting state xt+1 ∈ X , given that the state of the system is xt ∈ X and the agent plays action

at ∈ A.

r : X × A × X → < is the reward function, where r (xt, at, xt+1) denotes the reward perceived by

the agent, when the system goes from state xt to sate xt+1 after playing action at.

he goal of any MDP is to maximize the expected cumulative reward in an infinite time horizon:

maxE

( ∞∑

t=0

γtr (xt, at, xt+1)

)
, (17

γ , (0, 1) is called the discount factor.

e now reformulate the problem described in Section 3 and pose it as an MDP problem. Suppose tha

discrete version of ∆|M|, and that p (xt+1|xt, at) is a deterministic transition probability function

(9). Let Ukm denote a discrete set with the dose concentrations of inhibitor k ∈ K that targets t

type m ∈ M. The set of actions, A ,
∏

k∈K,m∈M Ukm, represents the Cartesian product of set

and includes all possible combination of drugs that can be used in a inhibitor–based therapy. In thi

any action at ∈ A is unequivocally defined by a specific combination of drugs. We also define tw

nal state sets. The first terminal state set, Xend1 , {xt ∈ X : xHO < xmin
HO }, occurs when therapy

In that case, when therapy fails, the agent perceives a high enough penalty c ∈ <<0. The second

nal state set is Xend2 , {xt ∈ X : xHO > xmax
HO } and implies that therapy succeed. We are ready t

ulate cost function (11) as an MDP reward function:
10
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r (xt, at, xt+1) ,



c if xt+1 ∈ Xend1, (18a

0 if xt ∈ Xend2, (18b

− (σ + e(at)) otherwise. (18c

ith the problem posed according to an MDP, the solution can be obtained by solving the Bellman

ion [77, 78]. The Bellman equation, denoted as v : X → <, is defined as follows:

v (xt) , max
at∈A


r (xt, at, xt+1) + γ

∑

xt+1∈X
p (xt+1|xt, at) v (xt+1)


 ,∀xt ∈ X . (19

ssion (19) provides the value function or the maximum expected long term return of state xt. In

, it indicates how good or bad such a state is.

he Bellman equation, given by (19), is called state value function, to emphasize that it is defined in

of states. We can also find another function called q–function, which expresses a similar idea a

oes, but in terms of state–action pairs instead of just states. The q–function, or state-action valu

ion, is denoted as q : X ×A → < and is defined as follows:

q (xt, at) , r (xt, at, xt+1) + γ
∑

xt+1∈X
p (xt+1|xt, at) max

at+1∈A
q (xt+1, at+1) ,∀xt ∈ X ,∀at ∈ A. (20

gously to the Bellman equation, now q–function provides the maximum expected long term return

ying action at ∈ A at state xt ∈ X .
t us recall that expressions (19) and (20) are equivalent, in the sense that (19) refers to state

ates how good a state is), whereas (20) refers to state-action pairs (indicates the effectiveness o

ting an action in a certain state). In fact, both expressions can be derived from each other a

s:

v (xt) = max
at∈A

q (xt, at) , (21

q (xt, at) = r (xt, at, xt+1) + γ
∑

xt+1∈X
p (xt+1|xt, at) v (xt+1) ,∀xt ∈ X ,∀at ∈ A. (22

far, we have taken the problem posed in Section 3, formulated it as an MDP, and solved it with

(19), (20), (21), or (22). However, this approach requires us to know transition probabilitie

1|xt, at) and we may not have access to this information. Therefore, we need a methodology t

ximate the Bellman equation or the q–function without knowing the transition probabilities or th

ur’s dynamic equations. RL offers a framework to address this problem.

g. 2 depicts a typical RL-based algorithm schematic. In this scenario, an agent observes state x

xecutes action at. As a consequence of the action, the scenario changes from state xt to xt+1 and th

receives a reward r (xt, at, xt+1). According to our scenario, the environment in Fig. 2 is defined

), the reward is defined by (18), and the actions are defined by combination of drugs listed late

ble 3. In this way, q–function can be estimated with a model–free techniques as Q–learning, which
11
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Figure 2: Generalized RL–scheme.

bably the simplest RL–based algorithm that can be used to solve complex problems as (16). Le

0, 1) denote a scalar called the learning rate. Q-learning updates the value of playing action at ∈ A
the state of the system is xt ∈ X , as follows (see e.g. [77]):

q (xt, at)← (1− α) q (xt, at) + α

(
r (xt, at, xt+1) + γ max

at+1∈A
q (xt+1, at+1)

)
,∀xt, xt+1 ∈ X . (23

ote that (23) estimates (20) without considering transition probabilities and without access to dy

(9). The convergence of (23) is achieved by applying the scheme of Fig. 2 iteratively. Onc

ssion (23) converges, the optimal control is given by the actions that deliver the maximum expected

at each state.

-learning requires a discrete state-action set, while ∆|M|, the state space in the problem at hand, i

uous. A discretized version of∆|M| would lead to a state-action set with such a large dimensionality

t would made (23) be computationally infeasible. This drawback is overcome with neural networks

ered as universal approximation functions, with the ability to map from continuous states x(t) ∈
to discrete actions at ∈ A. In this way, we move from Q-learning to Deep Q-learning (or Deep

works) by posing (16) as an MDP, with direct access to the continuous state space. Let θ and

note the weights of the policy and the target nets respectively. Different from Q-learning, Deep

works (DQN) now estimates the state-action value function (20) with a Q-function:

Q (xt, at; θ) , r (xt, at, xt+1) + γ max
at+1∈A

Q (xt+1, at+1; θ′) , (24

L (θ) , E
(
r (xt, at, xt+1) + γ max

at+1∈A
Q (xt+1, at+1; θ′)−Q (xt, at; θ)

)2

(25

loss function, which updates the weights of the policy net by using the gradient descent algorithm

owever, the original DQN algorithm may overestimate the value of the actions under certain con

s [79]. DDQN can alleviate this overestimation by introducing a slight change in (24). Differen

DQN, DDQN involves both the policy and target networks in maximizing the estimation of th

ction. Concretely, the policy net selects the action to be used (i.e., the one that maximizes th

), but the value is taken from the target network:

Q (xt, at; θ) , r (xt, at, xt+1) + γQ

(
xt+1, arg max

at+1∈A
Q (xt+1, at+1; θ) ; θ′

)
. (26
12
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and may improve significantly the algorithm results. Our network topology consists on a singl

connected hidden layer with 72 neurons and relu activation function. We set γ = 0.9992, α = 0.00

lso implement ε–greedy policy from εmax = 1.0 to εmin = 0.0001 with decay 2.222 ·10−5 per episode

eplay memory consists on 512 experiences which update the target network every 10 episodes. An

de ends when the problem trajectory reaches one of the terminal states defined above. Full detail

Python code implementation of DDQN, environment (9) and reward function (18) are available a

://github.com/jsanno/ddqn.

he Hamilton–Jacobi–Bellman equation

he Hamilton–Jacobi–Bellman (HJB) equation is the most important equation in non-linear contro

y and one of the most popular methodologies, for solving deterministic continuous time optima

ols. It was also used in [80] to solve problems similar to (16). In this paper, we solve the HJB

ion in order to compare the goodness of the solutions obtained with DDQN and validate them. Th

equation states the condition for the value function:

∂V

∂t
, − min

u(t)∈U

(
∂V

∂x

>
f (x(t),u(t)) + L (x(t),u(t))

)
. (27

s the value function represents the minimum expected long term cost subject to a dynamic f (x(t),u(

problem (16) can be reformulated in terms of the value function, as follows:

V (x(t0), t0, tf ) , min
u(t)∈U

J (x(t),u(t), t0, tf ) ,

s.t.
dx

dt
= f (x(t),u(t)) ,

(28

U denotes the set of admissible controls, which is equal to <|M||K|≥0 for the problem we are dealin

and f (x(t),u(t)) denotes the dynamic under control, i.e. the RE introduced in Subsection 2.5.

owever, in most cases it is very difficult and even intractable to obtain a classical solution of problem

i.e., a continuous and differentiable value function, since the minimization operator in (27) implie

g a system with non-linear partial differential equations. For this reason, we solve the HJB equation

rically with a tool called BocopHJB, which can be found available for free at [81]. BocopHJB

ses a numerical approximation, which consists of discretizing the state space, to later iteratively

ate the value function through dynamic programming. Concretely, let N ∈ Z denote the numbe

e steps. Let h0 , tf
N

represents the time step size. Then, the time for any step k ∈ Z if given by

h0k. Algorithm 1 includes the BocopHJB’s pseudocode to compute the value function at tk.
13
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Algorithm 1 BOCOPHJB: Compute value function at tk
Require: 0 ≤ k ≤ N
1: fo

2:

3:

4:

5:

6:

7:

8: e
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r x ∈ Grid do

if k == N then

Vk(x)⇐ K(tf )

else

xk+1 ⇐ x+ h0f(u, x)

Vk(x)⇐ minu∈U (h0L(tk,u, x) + Ex [Vk+1(xk+1)])

end if

nd for

ontrol problem parametrization

t us start with the parametrization of the functions introduced in Definitions 2 and 3. Thi

etrization can also be found summarized in Table 1. We first focus on the findings of [82], on

lucose and lactate concentrations in colorectal liver metastasis. Authors in this reference do no

ciate significant differences in the glucose concentrations of healthy and tumour tissues. They stat

3.6 mM and 17.2 ± 1.5 mM, for the glucose concentrations found in healthy and tumour tissues

ctively. For this reason we set aS = 13.5− 20.7 mM in Table 1. It can be found in the same refer

that the lactate concentrations in healthy tissues is 1.7± 0.3 mM. This parameter is later tuned in

ction 5.1.1 to reproduce some clinical results.

eference [4] indicates that blood lactate concentrations for healthy and cancerous tissues are 1.5−
nd 10− 30 mM, respectively. Here we understand that lactate becomes toxic for HO from 10 mM

ssign `sup = 10 mM in Table 1. However, we do not have medical data to characterize the negativ

t of lactate over the healthy cells. For the moment, we set θHO = 0.0−0.01 M−1 in Table 1 and tun

arameter in Subsection 5.1.3 in order to reproduce the clinical results observed in the literature

arly, we set bL = 9.5− 28.3 in Table 1 and tune this parameter in Subsections 5.1.1 and 5.1.2.

lucose transporter 1 (GLUT1) is overexpressed in colorectal cancer [83]. Recall that GLUT1 is on

rteen proteins which are responsible for the uptake of glucose across the cell membrane. Referenc

rovides estimations with the affinity of GLUT1 for glucose in 3 − 7 mM. For this reason we se

3− 7 mM in Table 1. Monocarboxylate transporter 1 (MCT1) is also overexpressed in colorecta

r [85]. Recall that MCT1 is associated to oxidative cells and lactate uptake [86–89]. According t

0], the affinity of MCT1 for lactate is about 3− 10 mM. For this reason we set βRL = 3− 10 mM.

eference [73] fits the affinity of healthy phenotypes for the oxygen at 14.37 µM. In addition, hypoxi

ormoxia conditions are established in [91] with oxygen tensions 1–5% and 10–21%, respectively

placing these data and βHO = 14.37 µM in (7a), we obtain 0.14–0.75 µM and 1.6–3.82 µM as th

n concentrations in hypoxic and normoxic conditions, respectively. Since the Warburg effect is

olic alteration that occurs in normoxic conditions, we set aO = 3.82 µM in Table 1, for simplicity
14
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Glucose (normal conditions) aS = 13.5− 20.7 mM [82]

Lactate (normal conditions) aL = 1.4− 2 mM [82]

Oxygen (normoxia) aO = 3.82 µM [91]

Lactate tolerance `sup = 10 mM [4]

Lactate toxicity θHO = 0.0− 0.01 M−1 Section 5.1.3

Lactate production bL = 9.5− 28.3 mM x−1
GS Sections 5.1.1, 5.1.2

Phenotypes

Metabolism Affinity Ref.

Glycolytic βGS = 3− 7 mM [84]

βRL = 3− 10 mM [88–90]
Oxidative

βHO = 14.37 µM [73]

Reversible inhibitors

Inhibitor Inhibitory constant Ref.

Isoflavone genistein βGSC = 7 µM [92]

AR-C155858 βRLC̄ = 2.3 nM [93]

Table 1: Fitness parametrization.

o ensure that the environment is well enough oxygenated.

oflavone genistein is a competitive GLUT1 inhibitor with inhibitory constant equal to 7 µM [92]

AR-C155858 is a non-competitive inhibitor of MCT1 whose inhibitory constant is about 2.3± 1.

3]. With this information we set βGSC = 7 µM and βRLC̄ = 2.3 nM in Table 1.

e now assign numerical values to the problem established in Definition 4, and also include additiona

ents, regarding the implementation of the DDQN algorithm introduced in Subsection 4.1. All th

etrization of the control problem can also be found in Table 2.

uthors in [94] state that genistein at concentrations 5− 200 µM can arrest cell cycle by modulatin

tory proteins. In contrast, according to [95], the efficacy of MCT1 can be modulated with AR

858 at concentrations ranging from 329 nM to 819 nM. In this paper we set umin
GSC = 51.03 µM and

= 102.06 µM as the minimum and maximum doses of genistein, which can be applied to the patient

arly, we decide umin
RLC̄

= 2.7 nM and umax
RLC̄

= 5.4 nM for the dose concentrations of AR-C155858

that umax
GSC and umax

RLC̄
are too far from the maximum concentration of genistein and AR-C15585

lished in [94] and [95], respectively. In addition, with this parametrization we provide similar weight

istein and AR-C155858 in (15) and (18c), since umin
GSC/u

max
GSC ≈ umin

RLC̄
/umax

RLC̄
. We assume that AR

858 has more adverse effects or contraindications than genistein, by assigning σGSC = 1, σRLC̄ = 10

lso penalize the duration of the treatment with σ = 0.01.

r the running of DDQN, we set xmin
HO = 0.1 and xmax

HO = 0.9. This algorithm is trained for 90,00

des, with 300 as the maximum number of steps per episode, and with step size of 2 cell generations

isode ends when xHO (t) < xmin
HO , xHO (t) > xmax

HO or when the number of iterations is 300. We se

tra penalization with c = −1, 000 in (18a), whether xHO (t) < xmin
HO .
15
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Description Value Ref.

Minimum genistein dose umin
S = 51.03 µM [94]
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G C

Maximum genistein dose umax
GSC = 102.06 µM [94]

Minimum AR-C155858 dose umin
RLC̄ = 2.7 nM [95]

Maximum AR-C155858 dose umax
RLC̄ = 5.4 nM [95]

Medical contraindications σGSC = 1, σRLC̄ = 10 –

Failed terminal state xmin
HO = 0.1 –

Safe terminal state xmax
HO = 0.9 –

Treatment duration cost σ = 0.01 –

Failed therapy penalty c = −1, 000 –

Table 2: Control problem parametrization.

he action space is given by the dose concentrations of genistein and AR-C155858, which are applied

patient in each iteration. This action space is collected in Table 3. Finally, recall that ∆|M| is th

space, since the population state is defined as (1).

Action

1 2 3 4 5 6 7 8 9

Genistein dose 0.0 0.0 0.0 umin
GSC

umin
GSC

umin
GSC

umax
GSC

umax
GSC

umax
GSC

AR-C155858 dose 0.0 umin
RLC̄

umax
RLC̄

0.0 umin
RLC̄

umax
RLC̄

0.0 umin
RLC̄

umax
RLC̄

Table 3: Control problem action space.

esults and discussion

his section is divided into two different parts:

Subsection 5.1 uses the model presented in Section 2, in order to reproduce some observation

obtained from clinical trials of colorectal cancer and other tumours. We also explore the condition

that favour the establishment of polymorphic equilibria and discus whether lactate toxicity plays

relevant role in tumour development.

Subsection 5.2 presents the optimal therapeutic policy (the optimal targeted therapy solution in th

complete state space) provided by DDQN for 4 different tumor dynamics identified in Subsection

5.1. We illustrate the performance of these policies, comparing them with other more conventiona

therapeutic routines. Finally, we validate the results provided by DDQN by comparing them with

the numerical solutions of the HJB equation.
16
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Monomorphic populations in colorectal cancer

this subsection we parametrize our model with data obtained in [82] about colorectal liver metas

We show that our model is able to provide the same clinical finding about lactate concentration

an be found at [82]. We also provide further results with the evolution of cell populations.

g. 3a and 3b show how the phenotypic composition of cell populations evolves. Black lines ar

ent trajectories in order to represent the overall dynamic of the cell population. The background

on the simplex represent the modulus of the gradient associated with the dynamics. Specifically

colors represent fast dynamics, while the blue and purple colors represent slower ones. The filled

ollow red dots represent stable and unstable state equilibria respectively. Fig. 3c and 3d report th

course of lactate concentrations in the cell populations.

xRL

xGS

xHO

(a)

xRL

xGS

xHO

(b)

0 20 40 60 80 100

5

10

11.5 mM

1.7 mM

Generation

L
ac
ta
te

co
n
ce
n
tr
a
ti
on

[m
M
]

(c)

0 20 40 60 80 100

2

4

6

8

10

11.5 mM

2 mM

Generation

(d)

3: Reproducing some of the results provided by [82] regarding colorectal liver metastases. (a),(b) Tumour dynamics

) Time course of lactate concentration. Settings in (a),(c) aL = 1.7 mM, bL = 9.8 mM x−1
GS . Settings in (b),(d

2 mM, bL = 9.5 mM x−1
GS . Settings in (a),(b),(c),(d), aS = 17.1 mM, βGS = 5 mM, βRL = 6.5 mM, θHO = 0.0

the rest of parameters are included in Table 1).

esults in Fig. 3a show that HO rejects invasions by RL. In these cases, lactate level remains at 1.

see Fig. 3c). This level matches with the mean of lactate concentrations found in normal tissue

In this way, a cell population composed by phenotype HO corresponds to a healthy colorectal live

in our model. Any other invasion collapses the population with phenotype GS . In these othe
17



Journal Pre-proof

cases, the lactate concentration grows up to 11.5 mM (see Fig. 3c), which matches with the mean of
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e concentrations found in cancerous tissues [82]. This result suggests that phenotype G count

enough glucose to reproduce. In contrast, phenotype RL do not have enough lactate under norma

tions, and phenotype GS does not produce enough lactate to support RL. Consequently, RL tend

out while GS overcomes the cell population.

e now increase the lactate which is available in normal conditions (from aL = 1.7 mM to aL =

and reduce the lactate producing capacity of GS (from bL = 9.8 mM x−1
GS to bL = 9.5 mM x−1

GS )

2 mM in Fig. 3d matches with the maximum lactate concentration which is found in healthy

s [82]. Again, Fig. 3d also shows that general invasions drive GS to fixation, while HO and RL ar

guished. Eventually, phenotype RL is able to fixate in the population, but only in those invasion

do not include the presence of phenotype GS .

hen it can be concluded that in the case of heterogeneous mutations, cells with glycolytic metabolism

orectal liver tissues count with enough glucose resources to fixate in the population. In contrast

expressing other phenotypes tend to extinction. The end result in colorectal liver metastasis is

morphism given by populations with cells that express GS .

Polymorphic populations

this subsection we explore the conditions that favour polymorphisms in the Warburg effect. With

nd, we take the same parameters as those used in Fig. 3a and 3c; but now, we increase the amoun

tate produced by GS .

g. 4a and 4b show mixed strategy equilibria. Let x∗ ∈ ∆ denote a mixed strategy equilibria

equilibria represent different polymorphisms that share two characteristics. First, phenotype HO i

ct since it is not part of any of these equilibria (i.e. x∗HO = 0). Second, the fitness of GS matches with

tness of RL (i.e. fGS (x∗) = fRL (x∗)). Please note that x∗HO = 0 and fGS (x∗) = fRL (x∗) satisfy

brium conditions in (9). In addition, these equilibria are reached in Fig. 4c and 4d with lactat

equal to 22.23 mM. Recall that cancerous tissues show lactate concentrations about 10−30 mM (se

4]). Thus these polymorphisms represent tumour cell populations. The mixed equilibria in Fig. 4

ig. 4b are respectively at
(
x∗HO , x

∗
GS , x

∗
RL

)
≈ (0, 0.95, 0.035) and

(
x∗HO , x

∗
GS , x

∗
RL

)
≈ (0, 0.72, 0.26)

fore, the producing capacity of GS favours the presence of RL in polymorphisms.

s it occurs in Fig. 3a and 3c, Fig. 4 shows that 1.7 mM is not enough lactate for RL to proliferate

is the reason why HO rejects any invasion by RL. Different from results provided in Fig. 3a and

ig. 4 reports now monomorphic equilibria with GS , only in the case of invasions by this phenotype

is way, 23 mM in Fig. 4c and 30 mM in Fig. 4d represent complete invasions by phenotype GS .

conclusion, according to data found at [82] and with the parametrization introduced in Subsection

t can be deduced that RL needs 22.23 mM of lactate to match its fitness with GS . This quantity

tate is too high to be found in healthy tissues (see e.g. [4]). Thus, phenotype RL requires GS t

ce extra lactate to ensure its survival, as well as the constitution of tumour polymorphisms.
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4: Lactate promotes polymorphic populations thus increasing the complexity of any targeted therapy. (a),(b

r dynamics. (c),(d) Time course of lactate concentration. Settings in (a),(c) bL = 21.3 mM x−1
GS . Settings i

) bL = 28.3 mM x−1
GS . Settings in (a),(b),(c),(d) aS = 17.1 mM, aL = 1.7 mM, βGS = 5 mM, βRL = 6.5 mM

0.01 M−1 (the rest of parameters are included in Table 1).

Lactate toxicity in colorectal cancer

any authors as [4–7] argue that lactate can be poisonous to healthy cells and innocuous to cance

In this subsection we review the influence of lactate toxicity on colorectal liver metastasis.

previous subsections we set θHO = 0.01 M−1. Suppose that lactate is safe for HO regardless of it

ntration in the population; that is, we now set θHO = 0. Suppose that under normoxic conditions

HO are at the best possible scenario before invasion occurs. In such a scenario, the fitness of HO

d be as high as possible, while the fitness of RL and GS should be as low as possible. This situation

e considered by selecting from Table 1 the following parametrization: aS = 13.5 mM, aL = 1.4 mM

3.82 µM, βGS = 7 mM, βRL = 10 mM, βHO = 14.37 µM, and by setting θHO = 0, as well. Now

placing these parameters in (6c), (7a) and (7a), we obtain the following fitness for phenotypes HO

S :

fHO (x(t)) = 0.21, fGS (x(t)) = 0.66,∀x(t) ∈∆. (29

, the metabolic strategy of GS is strictly superior than HO, regardless of the state of the population

er words, strategy HO is strictly dominated by GS . Therefore, under normoxic conditions (recal
19
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that the Warburg effect occurs under normoxic conditions), a population of cells that express phenotype
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uccumbs to any invasion by G , regardless of whether the lactate is toxic or not.

e now examine the quantity of lactate that RL needs to get a higher fitness than HO; i.e. we wan

ow the concentration given by (3), which satisfies:

fRL (x(t)) ≥ fHO (x(t)) . (30

placing the previous parameters in (30), we obtain that lactate levels have to meet sRL (x(t)) ≥ 2.6

Therefore, phenotype RL needs at least 2.66 mM of lactate to get a higher fitness than HO

l that lactate concentrations in colorectal liver are about 1.4–2 mM and 8.7–14,3 mM in healthy

ancerous tissues, respectively. Also recall that in general, lactate concentrations in normal and

ur tissues are 1.5–3 mM and 10–30 mM, respectively (see e.g. [4]). Other references as [96] even

ve tumours with lactate concentrations up to 40 mM. Therefore, in a tumour environment and unde

oxic conditions, phenotype RL has enough lactate to get a higher fitness that HO.

conclusion, lactate toxicity does not seem to be a determining factor in the aggressiveness o

our, since malignant phenotypes have sufficient resources under normal conditions to lead th

lation to collapse in the event of any mutation.

ptimal DDQN based control solution

this section we cover the optimal therapy solutions obtained with DDQN.

g. 5 shows the optimal DDQN solutions for the tumour state space. Concretely, Fig. 5a and Fig. 5b

sent the optimal therapeutic policies on the monomorphic populations found in colorectal cancer in

ction 5.1.1, while Fig. 5c and Fig. 5d refers to the optimal policies on the polymorphic population

ed in Subsection 5.1.2. Recall that parametrization is collected in Tables 1 and 2 with the action

defined in Table 3. The white zone located to the left of the simplex represents Xend1, with al

terminal states where we assume that therapy fails. On the contrary, the area of the same colo

is on the right corresponds to the terminal states where the therapy is successful, i.e. Xend2. Th

lines in Fig. 5 illustrate tumour dynamics subject to DDQN’s optimal policy. One can get a bette

of the effect of this therapy, by comparing these trajectories with therapy-free tumour dynamics

ig. 5a vs. Fig. 3a, Fig. 5b vs. Fig. 3b, Fig. 5c vs. Fig. 4a and Fig. 5d vs. Fig. 4a. Based on

omparison, it can be verified that optimal therapy leads tumour dynamics to the set of safe states

.

ccording to Fig. 5, actions 7, 8 and 9 are the only which take part in the optimal policies obtained

DDQN, i.e., the actions from 1 to 6 are not part of any optimal therapy. This result can be usefu

design of real therapies, because it suggests a significant simplification of the dose combinations t

ed. Furthermore, the dose combinations are always the same, regardless of whether the tumour i

morphic or polymorphic, which suggests a possible standardization of the inhibitor cocktails to b
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5: DDQN’s optimal therapeutic policies (the optimal solution for the entire state space of the tumour). (a),(b),(c

) shows the DDQN’s optimal targeted therapy for tumour dynamics observed in Fig. 3a, 3b, 4a and 4b, respectively

gs in (a) aL = 1.7 mM, bL = 9.8 mM x−1
GS . Settings in (b) aL = 2 mM, bL = 9.5 mM x−1

GS . Settings in (c) aL = 1.

L = 21.3 mM x−1
GS . Settings in (d) aL = 1.7 mM, bL = 28.3 mM x−1

GS . Settings in (a),(b),(c),(d) aS = 17.1 mM

5 mM, βRL = 6.5 mM, θHO = 0.01 M−1 (the rest of parameters are included in Tables 1 and 2).

terestingly, all of the optimal policies in Fig. 5 target GS with the maximum tolerated genistein

In contrast, phenotype RL is never targeted with the maximum tolerated AR-C155858 dose. Thes

s suggest that DDQN learns that RL can be attacked indirectly through GS (remember that RL

es support from lactate released by GS). The maximum dose of AR-C155858 is never administered

tients, as a result of this reason and in order to minimize the costs associated with the therapy’

ty.

ble 4 summarizes the average costs of each of policies represented in Fig. 5. These costs ar

esult of averaging 512 different trajectories with uniformly distributed initial states in the non

nal state space, i.e., each initial state is obtained by sampling the space ∆|M| − Xend1 − Xend2 =

∈∆|M|,x(t) 6∈ Xend1,x(t) 6∈ Xend2} uniformly. Recall from Subsections 5.1.1 and 5.1.2 that lactat

ibutes to the heterogeneity of phenotypes in the cell population. We also suggest that heterogeneity

ncrease tumour aggressiveness and complicate treatment. Now, Table 4 provides therapeutic cost
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that increase from the dynamics observed in Fig. 5a to Fig. 5d. Consequently, lactate is a reliable
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tor of poor prognosis and high therapeutic costs.

Optimal therapy

Fig. 5a Fig. 5b Fig. 5c Fig. 5d

DDQN Cost 396.10 424.36 504.51 556.67

Table 4: Average costs of the optimal therapeutic policies represented in Fig. 5.

Optimal DDQN therapy vs conventional therapy

his subsection aims to compare DDQN-based therapies with other more conventional approaches

ose that in a conventional therapy, the doctor decides to apply the following protocol:

at ,
{
a6 if xGS 6 xRL , (31a

a8 otherwise . (31b

ding to Tables 2 and 3, the therapy defined by (31a) and (31a) involves attacking the dominan

ur phenotype with the corresponding maximum tolerated dose, while the secondary phenotype i

ked with the minimum tolerated dose. In this way, the aim is to attack both tumour phenotypes a

me time, avoiding the excessive costs of applying the maximum tolerated doses at the same time.

g. 6 and Table 5 show the results in the case that no therapy is applied to the patient, in the cas

plementing the conventional therapy defined above and in the case of using the optimal therapy ob

with DDQN. All the trajectories start from the same initial state (xHO , xGS , xRL) = (0.3, 0.6, 0.1)

y case, the absence of treatment implies the loss of the patient in two iteration steps. Note tha

ntional therapy also fails in the cases with more aggressive tumours, represented by Fig. 6c and 6d

l again, as discussed in Subsection 5.1.2, that Figs. 6c and 6d represent scenarios with polymorphi

bria that are generated due to the presence of high lactate concentrations. The fact that conven

l therapy succeeds in the cases represented by Figs. 6a and 6b and fails in the cases of Figs. 6c and

indicative that lactate contributes to tumour aggressiveness. For this reason, conventional therapy

arlier (uses fewer steps in Table 5) in the scenario represented by Fig. 6d.
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6: Illustration of tumour dynamics under no therapy, conventional therapy and DDQN’s optimal therapy. No therap

fails. Conventional therapy succeeds in (a) and (b), but fails in more aggressive tumours (c) and (d). DDQN’

l targeted therapy always succeeds. Settings in (a) aL = 1.7 mM, bL = 9.8 mM x−1
GS . Settings in (b) aL = 2 mM

.5 mM x−1
GS . Settings in (c) aL = 1.7 mM, bL = 21.3 mM x−1

GS . Settings in (d) aL = 1.7 mM, bL = 28.3 mM x−1
GS

gs in (a),(b),(c),(d) aS = 17.1 mM, βGS = 5 mM, βRL = 6.5 mM, θHO = 0.01 M−1 (the rest of parameters ar

ed in Tables 1 and 2).

g. 6 shows that DDQN recovers the patient in all scenarios. Furthermore, Table 5 indicates lowe

peutic costs with DDQN, even though it approaches terminal failure states and employs a greate

er of steps in patient recovery. DDQN would have obtained straighter trajectories towards the saf

nal state, without passing close to the failure terminal state, in the case of assigning greater relativ

t to the penalty of treatment duration (parameter σ) over the toxicity of drugs (parameters σm
max
mk for all m ∈M, k ∈ K ).

Validation of DDQN solutions with HJB

this subsection we validate the optimal therapy solutions obtained with DDQN by comparing i

the solution provided by HJB.

Fig. 7, we can compare the performance of DDQN vs. HJB. Figs. 5a and 7a respectively show th
23
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steps cost steps cost steps cost steps cost

No therapy 2 1,000.02 2 1,000.02 2 1,000.02 2 1,000.02

Conventional therapy 52 625.04 53 637.06 34 1,504.66 24 1,366.46

DDQN therapy 62 545.24 58 587.16 62 705.24 66 773.32

Table 5: No therapy vs conventional therapy vs DDQN therapy: Iteration steps and therapeutic cost.

al policies obtained by DDQN and HJB, under the tumour dynamics represented in Fig. 3a. In

b, we compare the therapeutic costs of 512 different trajectories. The initial state of each trajectory

een obtained by uniformly sampling the non-terminal state space. As it can be seen in Fig. 5a and

a, the optimal therapies obtained with DDQN and HJB are apparently very different. Concretely

ptimal policy provided by HJB is much more complex, since it uses a significantly higher number o

s than DDQN.

(a)
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(b)

7: Optimal therapeutic policies: HJB vs. DDQN under tumour dynamics observed in Fig. 3a. (a) HJB’s optima

ed policy. HJB has an average cost of 394.37 compared to 396.10 (see Table 4) for DDQN. (b) Trajectory cost

ed with DDQN and HJB. Welch’s t-test p-value: 0.87, thus there is no evidence that HJB and DDQN trajector

re different. Settings: aL = 1.7 mM, bL = 9.8 mM x−1
GS , aS = 17.1 mM, βGS = 5 mM, βRL = 6.5 mM, θHO = 0.0

the rest of parameters are included in Tables 1 and 2).

owever, the results observed in Fig. 7b suggest that both policies are quite similar from the perspec

f therapeutic costs. The average cost over the 512 trajectories are 396.10 and 394.37 for DDQN and

respectively. Therefore, in this case, the HJB policy gets an improvement of 0.4 % over the DDQN

, at the cost of increasing the complexity of the therapy, which can be a problem in the case of

mplementation.

g. 7b shows some trajectories where the cost obtained by HJB is greater than DDQN. This is surely
24
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due to slight mismatches in the numerical approximations and interpolations applied by BocopHJB. In
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ase, a Welch’s t-test on the samples in Fig. 7b provides a very high p-value equals to 0.87. Therefore

is no evidence to support that the policies shown in Figs. 5a and 7a present different average costs

ugh visually they do not look alike. Very different policies can give similar cost results.

onclusion and future works

erobic glycolysis has been considered for a long time as an inefficient metabolic disorder in obtainin

y for the cell development. The lactate generated in aerobic glycolysis has also been considered as

oduct or metabolic waste with no apparent utility. However, nowadays it is known that lactate can b

as an extra energy source by some cellular phenotypes to proliferate. In this way, from a evolutionary

ective, glycolytic metabolism may make sense even under normal oxygen conditions, since it allow

rease the polymorphic heterogeneity of tumours and thus favour their aggressiveness. In this work,

e model based on EGT has been proposed to represent this complex metabolic alteration, a.k.a. th

urg effect, which is common to many types of cancer. This model has been adequately parametrized

roduce the clinical observations obtained from different studies on colorectal cancer and other mor

ssive tumours. This model has also been used as a training scenario for control systems based on

t deep learning algorithms.

this work, we propose the first optimal therapy based on experimental tumour growth inhibitors

have been obtained through the efficient implementation of control systems based on deep learning

esults have been compared with the solutions provided by HJB. The conclusion is that the policie

ned with HJB slightly outperform DDQN, at the cost of increasing the complexity of therapeuti

es. In real life, the implementation of simpler routines such as those obtained with DDQN may

more sense, although these are suboptimal compared to those obtained with HJB. Furthermore

g HJB is conditioned on an exact knowledge of the system to be controlled, which is infeasible in

of the real-life cases. DDQN does not need to know the differential equations that govern tumou

ics, but it requires a sufficiently reliable scenario to train. The quality of the scenario used in th

ng of any reinforcement learning algorithm is key to get realistic optimal policies. However, in ou

the implementation of a realistic scenario requires many clinical observations that provide clear and

e information on how the tumour evolves over time. For this reason, in future work, we plan t

the model presented in this paper, as the literature provides chemical, biological, and medical dat

llow a more accurate understanding of tumour dynamics.

etermining the system state is also an important detail to consider. In this paper, we have considered

the state is a vector with components that represent the relative frequency of the phenotype

ssed by the cells. A Markov decision process can be used to model tumour dynamics in this case

the state of the system is observable. Nevertheless, in many real-world applications, the state canno

rectly observed or accessible, and estimates may be affected by noise. This may require posing th

em from the perspective of a partially observable Markov decision process. Deep recurrent Q
25
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networks [97], an extension of DQN with recurrent networks, could also be useful to address these types
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blems.

this paper we have modelled tumour dynamics with deterministic differential equations. Thi

ximation is useful to address general or average dynamics. However, tumour dynamics may also b

iated with stochastic components. A natural way to address the problem of obtaining therapeuti

ents in this type of systems would be by implementing stochastic optimal controls.

conclusion, we highlight that the results obtained in this paper on optimal policies are in silico

ermore, the present study has the limitations described above. In this regard, the results derived

these therapies should be viewed with caution since much work remains to be done in order t

n optimal treatments against cancer.
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ndix A. Obtaining RE from expression (8)

t N ∈ <≥0 denote the size of a cell population. Recall from Section 2.5, that Nm ∈ <≥0 denote

e number of cells that express phenotype m ∈ M. Then, the relative frequency of any phenotype

uced in Section 2.1, is given by:

xm(t) , Nm(t)

N(t)
,∀m ∈M. (A.1

erivative of (A.1) with respect to time results:

ẋm(t) =
Ṅm(t)N(t)−Nm(t)Ṅ(t)

N2(t)
,∀m ∈M. (A.2

erivative of N(t) with respect to time also satisfies:

Ṅ(t) ,
∑

n∈M
Ṅn(t). (A.3

placing (A.3) in (A.2):

ẋm(t) =
Ṅm(t)N(t)−Nm(t)

∑
n∈M Ṅn(t)

N2(t)
,∀m ∈M. (A.4

tion (8) can be expressed as follows:

Ṅn(t) = Nn(t)fn (x(t),u(t)) ,∀n ∈M. (A.5

placing (A.5) in (A.4):

ẋm(t) =
Nm(t)fm (x(t),u(t))

N(t)
− Nm(t)

∑
n∈MNn(t)fn (x(t),u(t))

N2(t)
,∀m ∈M. (A.6

ly, expression (9) can be directly obtained by replacing Nn(t) = N(t)xn(t),∀n ∈M, from (A.1), in

.
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 A model based on evolutionary game theory is proposed to represent the dynamics of 
cell populations subject to the Warburg effect. This model reproduces by computer 
Jo
ur

na
l P

re
-p

ro
of

simulation some clinical results observed in colorectal liver metastasis and other even 
more aggressive cancers. 

 In silico results with optimal targeted therapies using Double Deep Q-networks is 
proposed. These therapies seek to attack cells that express specific cancerous 
phenotypes, with the combination of tumor growth reversible inhibitors in different 
doses. These therapies also consider the duration of treatment, drug toxicity, 
contraindications and harmful side effects in order to guarantee the patients’ quality of 
life. 

 Optimal therapies obtained with Double Deep Q-networks are validated with the 
solutions of the Hamilton-Jacobi-Bellman equation. 
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